全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Developing a New Two-Step Protocol to Generate Functional Hepatocytes from Wharton’s Jelly-Derived Mesenchymal Stem Cells under Hypoxic Condition

DOI: 10.1155/2013/762196

Full-Text   Cite this paper   Add to My Lib

Abstract:

The shortage of donor livers and hepatocytes is a major limitation of liver transplantation. Thus, generation of hepatocyte-like cells may provide alternative choice for therapeutic applications. In this study, we developed a new method to establish hepatocytes from Wharton’s jelly-derived mesenchymal stem cells (WJ-MSCs) cell lines named WJMSCs-SUT1 and WJMSCs-SUT2 under hypoxic condition. This new method could rapidly drive both WJ-MSCs cell lines into hepatic lineage within 18 days. The achievement of hepatogenic differentiation was confirmed by the characterization of both phenotypes and functions. More than 80% MSCs-derived hepatocyte-like cells (MSCDHCs) achieved functional hepatocytes including hepatic marker expressions both at gene and protein levels, glycogen storage, low-density lipoprotein uptake, urea production, and albumin secretion. This study highlights the establishment of new hepatogenic induction protocol under hypoxic condition in order to mimic hypoxic microenvironment in typical cell physiology. In conclusion, we present a simple, high-efficiency, and time saving protocol for the generation of functional hepatocyte-like cells from WJ-MSCs in hypoxic condition. The achievement of this method may overcome the limitation of donor hepatocytes and provides a new avenue for therapeutic value in cell-based therapy for life-threatening liver diseases, regenerative medicine, toxicity testing for pharmacological drug screening, and other medical related applications. 1. Introduction Orthotopic liver transplantation has been shown to be an effective treatment for patients with end stage of liver dysfunction. However, this treatment is limited by the shortage of donor organs. Although hepatocytes transplantation has been shown to be successful treatment in some conditions such as liver-based metabolic disorders, the insufficient donor organs and hepatocytes remain obstacles for this technique [1]. Recently, stem cells are a promising tool for using as cell-based therapy because of their superior properties including self-renewal and broad differentiation potential into several cell types. To date, mesenchymal stem cells (MSCs) have been shown to obtain promising capacity not only multilineages differentiation potential but also immunomodulatory properties [2]. In addition, MSCs can be extensively expanded in vitro, due to effective cryopreservation and being easy to access from various sources such as bone marrow, adipose tissue, amniotic fluid, umbilical cord Wharton’s jelly, and placenta [3–6]. These make MSCs become a good stem cell

References

[1]  A. Dhawan, J. Puppi, R. D. Hughes, and R. R. Mitry, “Human hepatocyte transplantation: current experience and future challenges,” Nature Reviews Gastroenterology and Hepatology, vol. 7, no. 5, pp. 288–298, 2010.
[2]  M. Shi, Z. W. Liu, and F. S. Wang, “Immunomodulatory properties and therapeutic application of mesenchymal stem cells,” Clinical and Experimental Immunology, vol. 164, no. 1, pp. 1–8, 2011.
[3]  Y. A. Romanov, A. N. Darevskaya, N. V. Merzlikina, and L. B. Buravkova, “Mesenchymal stem cells from human bone marrow and adipose tissue: isolation, characterization, and differentiation potentialities,” Bulletin of Experimental Biology and Medicine, vol. 140, no. 1, pp. 138–143, 2005.
[4]  Z. Miao, J. Jin, L. Chen et al., “Isolation of mesenchymal stem cells from human placenta: comparison with human bone marrow mesenchymal stem cells,” Cell Biology International, vol. 30, no. 9, pp. 681–687, 2006.
[5]  D. L. Troyer and M. L. Weiss, “Wharton's Jelly-derived cells are a primitive stromal cell population,” Stem Cells, vol. 26, no. 3, pp. 591–599, 2008.
[6]  M. S. Tsai, J. L. Lee, Y. J. Chang, and S. M. Hwang, “Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol,” Human Reproduction, vol. 19, no. 6, pp. 1450–1456, 2004.
[7]  M. Witkowska-Zimny and E. Wrobel, “Perinatal sources of mesenchymal stem cells: Wharton's jelly, amnion and chorion,” Cellular and Molecular Biology Letters, vol. 16, no. 3, pp. 493–514, 2011.
[8]  R. E. Schwartz, M. Reyes, L. Koodie et al., “Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells,” Journal of Clinical Investigation, vol. 109, no. 10, pp. 1291–1302, 2002.
[9]  A. Banas, T. Teratani, Y. Yamamoto et al., “Adipose tissue-derived mesenchymal stem cells as a source of human hepatocytes,” Hepatology, vol. 46, no. 1, pp. 219–228, 2007.
[10]  Y. N. Zhang, P. C. Lie, and X. Wei, “Differentiation of mesenchymal stromal cells derived from umbilical cord Wharton's jelly into hepatocyte-like cells,” Cytotherapy, vol. 11, no. 5, pp. 548–558, 2009.
[11]  M. J. Lee, J. Jung, K. H. Na et al., “Anti-fibrotic effect of chorionic plate-derived mesenchymal stem cells isolated from human placenta in a rat model of CCl4-injured liver: potential application to the treatment of hepatic diseases,” Journal of Cellular Biochemistry, vol. 111, no. 6, pp. 1453–1463, 2010.
[12]  D. Zhang, M. Jiang, and D. Miao, “Transplanted human amniotic membrane-derived mesenchymal stem cells ameliorate carbon tetrachloride-induced liver cirrhosis in mouse,” PLoS One, vol. 6, no. 2, Article ID e16789, 2011.
[13]  Y. Yan, W. Xu, H. Qian et al., “Mesenchymal stem cells from human umbilical cords ameliorate mouse hepatic injury in vivo,” Liver International, vol. 29, no. 3, pp. 356–365, 2009.
[14]  A. Banas, T. Teratani, Y. Yamamoto et al., “Rapid hepatic fate specification of adipose-derived stem cells and their therapeutic potential for liver failure,” Journal of Gastroenterology and Hepatology, vol. 24, no. 1, pp. 70–77, 2009.
[15]  H. Okura, H. Komoda, A. Saga et al., “Properties of hepatocyte-like cell clusters from human adipose tissue-derived mesenchymal stem cells,” Tissue Engineering C, vol. 16, no. 4, pp. 761–770, 2010.
[16]  M. E. Amer, S. Z. El-Sayed, W. A. El-Kheir et al., “Clinical and laboratory evaluation of patients with end-stage liver cell failure injected with bone marrow-derived hepatocyte-like cells,” European Journal of Gastroenterology and Hepatology, vol. 23, no. 10, pp. 936–941, 2011.
[17]  D. Campard, P. A. Lysy, M. Najimi, and E. M. Sokal, “Native umbilical cord matrix stem cells express hepatic markers and differentiate into hepatocyte-like cells,” Gastroenterology, vol. 134, no. 3, pp. 833–848, 2008.
[18]  X. Chen and F. Zeng, “Directed hepatic differentiation from embryonic stem cells,” Protein and Cell, vol. 2, no. 3, pp. 180–188, 2011.
[19]  Y. B. Zheng, Z. L. Gao, C. Xie et al., “Characterization and hepatogenic differentiation of mesenchymal stem cells from human amniotic fluid and human bone marrow: a comparative study,” Cell Biology International, vol. 32, no. 11, pp. 1439–1448, 2008.
[20]  Q. Zhao, H. Ren, X. Li et al., “Differentiation of human umbilical cord mesenchymal stromal cells into low immunogenic hepatocyte-like cells,” Cytotherapy, vol. 11, no. 4, pp. 414–426, 2009.
[21]  T. Tamagawa, S. Oi, I. Ishiwata, H. Ishikawa, and Y. Nakamura, “Differentiation of mesenchymal cells derived from human amniotic membranes into hepatocyte-like cells in vitro,” Human Cell, vol. 20, no. 3, pp. 77–84, 2007.
[22]  R. Taléns-Visconti, A. Bonora, R. Jover et al., “Hepatogenic differentiation of human mesenchymal stem cells from adipose tissue in comparison with bone marrow mesenchymal stem cells,” World Journal of Gastroenterology, vol. 12, no. 36, pp. 5834–5845, 2006.
[23]  J. Cai, Y. Zhao, Y. Liu et al., “Directed differentiation of human embryonic stem cells into functional hepatic cells,” Hepatology, vol. 45, no. 5, pp. 1229–1239, 2007.
[24]  H. Baharvand, S. M. Hashemi, S. K. Ashtiani, and A. Farrokhi, “Differentiation of human embryonic stem cells into hepatocytes in 2D and 3D culture systems in vitro,” International Journal of Developmental Biology, vol. 50, no. 7, pp. 645–652, 2006.
[25]  S. Yao, S. Chen, J. Clark et al., “Long-term self-renewal and directed differentiation of human embryonic stem cells in chemically defined conditions,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 18, pp. 6907–6912, 2006.
[26]  M. L. Weiss, C. Anderson, S. Medicetty et al., “Immune properties of human umbilical cord Wharton's jelly-derived cells,” Stem Cells, vol. 26, no. 11, pp. 2865–2874, 2008.
[27]  M. L. Weiss, S. Medicetty, A. R. Bledsoe et al., “Human umbilical cord matrix stem cells: preliminary characterization and effect of transplantation in a rodent model of Parkinson's disease,” Stem Cells, vol. 24, no. 3, pp. 781–792, 2006.
[28]  K. C. Chao, K. F. Chao, Y. S. Fu, and S. H. Liu, “Islet-like clusters derived from mesenchymal stem cells in Wharton's jelly of the human umbilical cord for transplantation to control type 1 diabetes,” PLoS One, vol. 3, no. 1, Article ID e1451, 2008.
[29]  K. E. Mitchell, M. L. Weiss, B. M. Mitchell et al., “Matrix cells from Wharton's jelly form neurons and glia,” Stem Cells, vol. 21, no. 1, pp. 50–60, 2003.
[30]  W. C. Pereira, I. Khushnooma, M. Madkaikar, and K. Ghosh, “Reproducible methodology for the isolation of mesenchymal stem cells from human umbilical cord and its potential for cardiomyocyte generation,” Journal of Tissue Engineering and Regenerative Medicine, vol. 2, no. 7, pp. 394–399, 2008.
[31]  P. C. Tsai, T. W. Fu, Y. M. A. Chen et al., “The therapeutic potential of human umbilical mesenchymal stem cells from Wharton's jelly in the treatment of rat liver fibrosis,” Liver Transplantation, vol. 15, no. 5, pp. 484–495, 2009.
[32]  R. Jiang, Z. Han, G. Zhuo et al., “Transplantation of placenta-derived mesenchymal stem cells in type 2 diabetes: a pilot study,” Frontiers of Medicine, vol. 5, no. 1, pp. 94–100, 2011.
[33]  K. Si-Tayeb, F. K. Noto, M. Nagaoka et al., “Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells,” Hepatology, vol. 51, no. 1, pp. 297–305, 2010.
[34]  C. Chauvet, B. Bois-Joyeux, E. Berra, J. Pouyssegur, and J. L. Danan, “The gene encoding human retinoic acid-receptor-related orphan receptor α is a target for hypoxia-inducible factor 1,” Biochemical Journal, vol. 384, no. 1, pp. 79–85, 2004.
[35]  C. Chauvet, A. Vanhoutteghem, C. Duhem et al., “Control of gene expression by the retinoic acid-related orphan receptor alpha in HepG2 human hepatoma cells,” PLoS One, vol. 6, no. 7, Article ID e22545, 2011.
[36]  S. K. Kang, I. S. Shin, M. S. Ko, J. Y. Jo, and J. C. Ra, “Journey of mesenchymal stem cells for homing: strategies to enhance efficacy and safety of stem cell therapy,” Stem Cells International, vol. 2012, Article ID 342968, 11 pages, 2012.
[37]  D. Surjana, G. M. Halliday, and D. L. Damian, “Role of nicotinamide in DNA damage, mutagenesis, and DNA repair,” Journal of Nucleic Acids, vol. 2010, Article ID 157591, 13 pages, 2010.
[38]  F. Sato, T. Mitaka, T. Mizuguchi, Y. Mochizuki, and K. Hirata, “Effects of nicotinamide related agents on the growth of primary rat hepatocytes and formation of small hepatocyte colonies,” Liver, vol. 19, no. 6, pp. 481–488, 1999.
[39]  J. S. Sidhu, F. Liu, and C. J. Omiecinski, “Phenobarbital responsiveness as a uniquely sensitive indicator of hepatocyte differentiation status: requirement of dexamethasone and extracellular matrix in establishing the functional integrity of cultured primary rat hepatocytes,” Experimental Cell Research, vol. 292, no. 2, pp. 252–264, 2004.
[40]  R. H. Costa, V. V. Kalinichenko, A. X. L. Holterman, and X. Wang, “Transcription factors in liver development, differentiation, and regeneration,” Hepatology, vol. 38, no. 6, pp. 1331–1347, 2003.
[41]  C. C. Chien, B. L. Yen, F. K. Lee et al., “In vitro differentiation of human placenta-derived multipotent cells into hepatocyte-like cells,” Stem Cells, vol. 24, no. 7, pp. 1759–1768, 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133