全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Comparison of the Direct Effects of Human Adipose- and Bone-Marrow-Derived Stem Cells on Postischemic Cardiomyoblasts in an In Vitro Simulated Ischemia-Reperfusion Model

DOI: 10.1155/2013/178346

Full-Text   Cite this paper   Add to My Lib

Abstract:

Regenerative therapies hold a promising and exciting future for the cure of yet untreatable diseases, and mesenchymal stem cells are in the forefront of this approach. However, the relative efficacy and the mechanism of action of different types of mesenchymal stem cells are still incompletely understood. We aimed to evaluate the effects of human adipose- (hASC) and bone-marrow-derived stem cells (hBMSCs) and adipose-derived stem cell conditioned media (ACM) on the viability of cardiomyoblasts in an in vitro ischemia-reperfusion (I-R) model. Flow cytometric viability analysis revealed that both cell treatments led to similarly increased percentages of living cells, while treatment with ACM did not (I-R model: %; hASC: %; hBMSC: %; ACM: %). Metabolic activity measurement (I-R model: ; hASC: ; hBMSC: ; ACM: ; arbitrary units) and lactate dehydrogenase assay (I-R model: ; hASC: ; hBMSC: ; ACM: ; arbitrary units) confirmed the flow cytometric results while also indicated a slight beneficial effect of ACM. Our results highlight that mesenchymal stem cells have the same efficacy when used directly on postischemic cells, and differences found between them in preclinical and clinical investigations are rather related to other possible causes such as their immunomodulatory or angiogenic properties. 1. Introduction Regenerative therapies are representing a relatively new possibility for the treatment of diseases where functional tissue is lost. This approach is aiming to restore organ functionality either by enhancing the resident stem cell population or with substituting the damaged tissue with added cells. Various cell types—such as embryonic, induced pluripotent and adult stem cells—are used to this aim each with its respective ethical, oncological, or immunological advantages and disadvantages [1–4], but data from clinical trials are mostly available from adult stem cells, namely, bone-marrow-derived stem cells (BMSCs) and adipose-derived stem cells (ASCs) [5]. Adipose-derived stem cells have lately become an attractive pool for autologous adult stem cells because of their relatively easy harvest from patients via minimally invasive liposuction [6, 7]. The use of these cells showed promising results and sometimes great success in various situations, such as in articular cartilage regeneration [8], musculoskeletal tissue repair [9–11], and the treatment of chronic, nonhealing wounds [12]. Considering cardiovascular applications, several reports indicated a consistent and significant benefit from cell transplantation after myocardial infarction in in vivo

References

[1]  S. Bajada, I. Mazakova, J. B. Richardson, and N. Ashammakhi, “Updates on stem cells and their applications in regenerative medicine,” Journal of Tissue Engineering and Regenerative Medicine, vol. 2, no. 4, pp. 169–183, 2008.
[2]  S. M. Wu and K. Hochedlinger, “Harnessing the potential of induced pluripotent stem cells for regenerative medicine,” Nature Cell Biology, vol. 13, no. 5, pp. 497–505, 2011.
[3]  C. Leeb, M. Jurga, C. Mcguckin et al., “New perspectives in stem cell research: beyond embryonic stem cells,” Cell Proliferation, vol. 44, supplement 1, pp. 9–14, 2011.
[4]  A. C. Brignier and A. M. Gewirtz, “Embryonic and adult stem cell therapy,” Journal of Allergy and Clinical Immunology, vol. 125, supplement 2, no. 2, pp. S336–S344, 2010.
[5]  R. Sanz-Ruiz, E. Gutiérrez Iba?es, A. V. Arranz, M. E. Fernández Santos, P. L. S. Fernández, and F. Fernández-Avilés, “Phases I-III clinical trials using adult stem cells,” Stem Cells International, vol. 2010, Article ID 579142, 12 pages, 2010.
[6]  P. A. Zuk, M. Zhu, P. Ashjian et al., “Human adipose tissue is a source of multipotent stem cells,” Molecular Biology of the Cell, vol. 13, no. 12, pp. 4279–4295, 2002.
[7]  A. Wilson, P. E. Butler, and A. M. Seifalian, “Adipose-derived stem cells for clinical applications: a review,” Cell Proliferation, vol. 44, no. 1, pp. 86–98, 2011.
[8]  F. Hildner, C. Albrecht, C. Gabriel, H. Redl, and M. van Griensven, “State of the art and future perspectives of articular cartilage regeneration: a focus on adipose-derived stem cells and platelet-derived products,” Journal of Tissue Engineering and Regenerative Medicine, vol. 5, no. 4, pp. e36–e51, 2011.
[9]  J. M. Gimble, W. Grayson, F. Guilak, M. J. Lopez, and G. Vunjak-Novakovic, “Adipose tissue as a stem cell source for musculoskeletal regeneration,” Frontiers in Bioscience, vol. 3, pp. 69–81, 2011.
[10]  S. Lendeckel, A. J?dicke, P. Christophis et al., “Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report,” Journal of Cranio-Maxillofacial Surgery, vol. 32, no. 6, pp. 370–373, 2004.
[11]  C. M. Cowan, Y.-Y. Shi, O. O. Aalami et al., “Adipose-derived adult stromal cells heal critical-size mouse calvarial defects,” Nature Biotechnology, vol. 22, no. 5, pp. 560–567, 2004.
[12]  M. Cherubino, J. P. Rubin, N. Miljkovic, A. Kelmendi-Doko, and K. G. Marra, “Adipose-derived stem cells for wound healing applications,” Annals of Plastic Surgery, vol. 66, no. 2, pp. 210–215, 2011.
[13]  B. Léobon, J. Roncalli, C. Joffre et al., “Adipose-derived cardiomyogenic cells: in vitro expansion and functional improvement in a mouse model of myocardial infarction,” Cardiovascular Research, vol. 83, no. 4, pp. 757–767, 2009.
[14]  R. Sanz-Ruiz, M. E. F. Santos, M. D. Mu?oa et al., “Adipose tissue-derived stem cells: the friendly side of a classic cardiovascular foe,” Journal of cardiovascular translational research, vol. 1, no. 1, pp. 55–63, 2008.
[15]  X. Bai, Y. Yan, Y.-H. Song et al., “Both cultured and freshly isolated adipose tissue-derived stem cells enhance cardiac function after acute myocardial infarction,” European Heart Journal, vol. 31, no. 4, pp. 489–501, 2010.
[16]  M. Mazo, J. J. Gavira, B. Pelacho, and F. Prosper, “Adipose-derived stem cells for myocardial infarction,” Journal of Cardiovascular Translational Research, vol. 4, no. 2, pp. 145–153, 2011.
[17]  K. Schenke-Layland, B. M. Strem, M. C. Jordan et al., “Adipose tissue-derived cells improve cardiac function following myocardial infarction,” Journal of Surgical Research, vol. 153, no. 2, pp. 217–223, 2009.
[18]  N. N. Hoke, F. N. Salloum, K. E. Loesser-Casey, and R. C. Kukreja, “Cardiac regenerative potential of adipose tissue-derived stem cells,” Acta Physiologica Hungarica, vol. 96, no. 3, pp. 251–265, 2009.
[19]  C. Valina, K. Pinkernell, Y.-H. Song et al., “Intracoronary administration of autologous adipose tissue-derived stem cells improves left ventricular function, perfusion, and remodelling after acute myocardial infarction,” European Heart Journal, vol. 28, no. 21, pp. 2667–2677, 2007.
[20]  A. Abdel-Latif, R. Bolli, I. M. Tleyjeh et al., “Adult bone marrow-derived cells for cardiac repair: a systematic review and meta-analysis,” Archives of Internal Medicine, vol. 167, no. 10, pp. 989–997, 2007.
[21]  M. J. Lipinski, G. G. L. Biondi-Zoccai, A. Abbate et al., “Impact of intracoronary cell therapy on left ventricular function in the setting of acute myocardial infarction. A collaborative systematic review and meta-analysis of controlled clinical trials,” Journal of the American College of Cardiology, vol. 50, no. 18, pp. 1761–1767, 2007.
[22]  E. Chavakis, M. Koyanagi, and S. Dimmeler, “Enhancing the outcome of cell therapy for cardiac repair: progress from bench to bedside and back,” Circulation, vol. 121, no. 2, pp. 325–335, 2010.
[23]  M. Mazo, M. Ara?a, B. Pelacho, and F. Prosper, “Mesenchymal stem cells and cardiovascular disease: a bench to bedside roadmap,” Stem Cells International, vol. 2012, Article ID 175979, 11 pages, 2012.
[24]  M. T. Elnakish, F. Hassan, D. Dakhlallah, et al., “Mesenchymal stem cells for cardiac regeneration: translation to bedside reality,” Stem Cells International, vol. 2012, Article ID 646038, 14 pages, 2012.
[25]  M. Mazo, V. Planat-Bénard, G. Abizanda et al., “Transplantation of adipose derived stromal cells is associated with functional improvement in a rat model of chronic myocardial infarction,” European Journal of Heart Failure, vol. 10, no. 5, pp. 454–462, 2008.
[26]  J. G. Rasmussen, O. Frobert, C. Holst-Hansen, et al., “Comparison of human adipose-derived stem cells and bone marrow-derived stem cells in a myocardial infarction model,” Cell Transplantation. In press.
[27]  M. Alvarez-Dolado, R. Pardal, J. M. Garcia-Verdugo et al., “Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes,” Nature, vol. 425, no. 6961, pp. 968–973, 2003.
[28]  J. Kajstura, M. Rota, B. Whang et al., “Bone marrow cells differentiate in cardiac cell lineages after infarction independently of cell fusion,” Circulation Research, vol. 96, no. 1, pp. 127–137, 2005.
[29]  C. E. Murry, M. H. Soonpaa, H. Reinecke et al., “Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts,” Nature, vol. 428, no. 6983, pp. 664–668, 2004.
[30]  J. M. Nygren, S. Jovinge, M. Breitbach et al., “Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation,” Nature Medicine, vol. 10, no. 5, pp. 494–501, 2004.
[31]  J. Rehman, D. Traktuev, J. Li et al., “Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells,” Circulation, vol. 109, no. 10, pp. 1292–1298, 2004.
[32]  T. P. Lozito and R. S. Tuan, “Mesenchymal stem cells inhibit both endogenous and exogenous MMPs via secreted TIMPs,” Journal of Cellular Physiology, vol. 226, no. 2, pp. 385–396, 2011.
[33]  S. Sadat, S. Gehmert, Y.-H. Song et al., “The cardioprotective effect of mesenchymal stem cells is mediated by IGF-I and VEGF,” Biochemical and Biophysical Research Communications, vol. 363, no. 3, pp. 674–679, 2007.
[34]  T. Kinnaird, E. Stabile, M. S. Burnett et al., “Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms,” Circulation Research, vol. 94, no. 5, pp. 678–685, 2004.
[35]  H. K. Haider and M. Ashraf, “Strategies to promote donor cell survival: combining preconditioning approach with stem cell transplantation,” Journal of Molecular and Cellular Cardiology, vol. 45, no. 4, pp. 554–566, 2008.
[36]  I. B. Copland and J. Galipeau, “Death and inflammation following somatic cell transplantation,” Seminars in Immunopathology, vol. 33, no. 6, pp. 535–550, 2011.
[37]  P. A. Zuk, M. Zhu, H. Mizuno et al., “Multilineage cells from human adipose tissue: implications for cell-based therapies,” Tissue Engineering, vol. 7, no. 2, pp. 211–228, 2001.
[38]  K. M. Kompisch, C. Lange, D. Steinemann et al., “Neurogenic transdifferentiation of human adipose-derived stem cells? A critical protocol reevaluation with special emphasis on cell proliferation and cell cycle alterations,” Histochemistry and Cell Biology, vol. 134, no. 5, pp. 453–468, 2010.
[39]  M. A. Vidal, N. J. Walker, E. Napoli, and D. L. Borjesson, “Evaluation of senescence in mesenchymal stem cells isolated from equine bone marrow, adipose tissue, and umbilical cord tissue,” Stem Cells and Development, vol. 21, no. 2, pp. 273–283, 2012.
[40]  A. Cselenyák, E. Pankotai, E. M. Horváth, L. Kiss, and Z. Lacza, “Mesenchymal stem cells rescue cardiomyoblasts from cell death in an in vitro ischemia model via direct cell-to-cell connections,” BMC Cell Biology, vol. 11, article 29, 2010.
[41]  A. Cselenyák, Z. Benko, M. Szepes, L. Kiss, and Z. Lacza, “Stem cell transplantation in an in vitro simulated ischemia/reperfusion model,” Journal of Visualized Experiments, no. 57, Article ID e3575, 2011.
[42]  M. Szepes, Z. Janicsek, Z. Benko, et al., “Pretreatment of therapeutic cells with poly(ADP-ribose) polymerase inhibitor enhances their efficacy in an in vitro model of cell-based therapy in myocardial infarct,” International Journal of Molecular Medicine, vol. 31, no. 1, pp. 26–32, 2013.
[43]  M. A. King, “Detection of dead cells and measurement of cell killing by flow cytometry,” Journal of Immunological Methods, vol. 243, no. 1-2, pp. 155–166, 2000.
[44]  R. de La Fuente, J. L. Abad, J. García-Castro et al., “Dedifferentiated adult articular chondrocytes: a population of human multipotent primitive cells,” Experimental Cell Research, vol. 297, no. 2, pp. 313–328, 2004.
[45]  J. Oswald, S. Boxberger, B. J?rgensen et al., “Mesenchymal stem cells can be differentiated into endothelial cells in vitro,” Stem Cells, vol. 22, no. 3, pp. 377–384, 2004.
[46]  X. Liu, Z. Wang, R. Wang, et al., “Direct comparison of the potency of human mesenchymal stem cells derived from amnion tissue, bone marrow and adipose tissue at inducing dermal fibroblast responses to cutaneous wounds,” International Journal of Molecular Medicine, vol. 31, no. 2, pp. 407–415, 2013.
[47]  Z. Zhou, Y. Chen, H. Zhang, et al., “Comparison of mesenchymal stromal cells from human bone marrow and adipose tissue for the treatment of spinal cord injury,” Cytotherapy, vol. 15, no. 4, pp. 434–448, 2013.
[48]  Z. Xishan, H. Baoxin, Z. Xinna, et al., “Comparison of the effects of human adipose and bone marrow mesenchymal stem cells on T lymphocytes,” Cell Biology International, vol. 37, no. 1, pp. 11–18, 2013.
[49]  E. Y. Plotnikov, T. G. Khryapenkova, A. K. Vasileva et al., “Cell-to-cell cross-talk between mesenchymal stem cells and cardiomyocytes in co-culture,” Journal of Cellular and Molecular Medicine, vol. 12, no. 5A, pp. 1622–1631, 2008.
[50]  F. Ishikawa, H. Shimazu, L. D. Shultz et al., “Purified human hematopoietic stem cells contribute to the generation of cardiomyocytes through cell fusion,” The FASEB journal, vol. 20, no. 7, pp. 950–952, 2006.
[51]  Z. Lacza, E. Horváth, and D. W. Busija, “Neural stem cell transplantation in cold lesion: a novel approach for the investigation of brain trauma and repair,” Brain Research Protocols, vol. 11, no. 3, pp. 145–154, 2003.
[52]  J. Garbade, A. Schubert, A. J. Rastan et al., “Fusion of bone marrow-derived stem cells with cardiomyocytes in a heterologous in vitro model,” European Journal of Cardio-Thoracic Surgery, vol. 28, no. 5, pp. 685–691, 2005.
[53]  P. Menasché, “You can't judge a book by its cover,” Circulation, vol. 113, no. 10, pp. 1275–1277, 2006.
[54]  N. A. Kouris, J. A. Schaefer, M. Hatta, et al., “Directed fusion of mesenchymal stem cells with cardiomyocytes via VSV-G facilitates stem cell programming,” Stem Cells International, vol. 2012, Article ID 414038, 13 pages, 2012.
[55]  L. Timmers, S. K. Lim, I. E. Hoefer et al., “Human mesenchymal stem cell-conditioned medium improves cardiac function following myocardial infarction,” Stem Cell Research, vol. 6, no. 3, pp. 206–214, 2011.
[56]  A. Wilson and A. Trumpp, “Bone-marrow haematopoietic-stem-cell niches,” Nature Reviews Immunology, vol. 6, no. 2, pp. 93–106, 2006.
[57]  G.-Q. Huang, J.-N. Wang, J.-M. Tang et al., “The combined transduction of copper, zinc-superoxide dismutase and catalase mediated by cell-penetrating peptide, PEP-1, to protect myocardium from ischemia-reperfusion injury,” Journal of Translational Medicine, vol. 9, article no. 73, 2011.
[58]  K. T. Keyes, Y. Ye, Y. Lin et al., “Resolvin E1 protects the rat heart against reperfusion injury,” The American Journal of Physiology, vol. 299, no. 1, pp. H153–H164, 2010.
[59]  D. K. Singla and D. E. McDonald, “Factors released from embryonic stem cells inhibit apoptosis of H9c2 cells,” The American Journal of Physiology, vol. 293, no. 3, pp. H1590–H1595, 2007.
[60]  D. Yang, W. Wang, L. Li, et al., “The relative contribution of paracine effect versus direct differentiation on adipose-derived stem cell transplantation mediated cardiac repair,” PLoS One, vol. 8, no. 3, Article ID e59020, 2013.
[61]  S. Alshammary, S. Fukushima, S. Miyagawa, et al., “Impact of cardiac stem cell sheet transplantation on myocardial infarction,” Surgery Today, 2013.
[62]  A. R. Williams, K. E. Hatzistergos, B. Addicott, et al., “Enhanced effect of combining human cardiac stem cells and bone marrow mesenchymal stem cells to reduce infarct size and to restore cardiac function after myocardial infarction,” Circulation, vol. 127, no. 2, pp. 213–223, 2013.
[63]  J. K. Fraser, I. Wulur, Z. Alfonso, and M. H. Hedrick, “Fat tissue: an underappreciated source of stem cells for biotechnology,” Trends in Biotechnology, vol. 24, no. 4, pp. 150–154, 2006.
[64]  L. Peng, Z. Jia, X. Yin et al., “Comparative analysis of mesenchymal stem cells from bone marrow, cartilage, and adipose tissue,” Stem Cells and Development, vol. 17, no. 4, pp. 761–773, 2008.
[65]  P. Diez Villanueva, R. Sanz-Ruiz, A. Nunez Garcia, et al., “Functional multipotency of stem cells: what do we need from them in the heart?” Stem Cells International, vol. 2012, Article ID 817364, 12 pages, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133