全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Necessity of a Systematic Approach for the Use of MSCs in the Clinical Setting

DOI: 10.1155/2013/892340

Full-Text   Cite this paper   Add to My Lib

Abstract:

Cell therapy has emerged as a potential therapeutic strategy in regenerative disease. Among different cell types, mesenchymal stem/stromal cells have been wildly studied in vitro, in vivo in animal models and even used in clinical trials. However, while clinical applications continue to increase markedly, the understanding of their physiological properties and interactions raises many questions and drives the necessity of more caution and supervised strategy in their use. 1. Introduction Since the discovery of pluripotent embryonic stem cells (ESCs) derived from the inner cell mass of blastocysts of embryos, stem cells have been defined by two principal characteristics: self-renewal and ability to differentiate in various cell types. The interest in stem cell use for clinical therapy and regeneration has been growing due to their ability to differentiate into various functional cell types. Among stem cells, two classes can be distinguished: pluripotent stem cells such as embryonic stem cells and induced pluripotent stem cells (IPSCs) [1] and multipotent stem cells with more restricted differentiation capacities, often referred to as adult stem cells. The source of ESCs and the methods used to generate IPSCs [2] together with the risk of teratoma formation [3] raise ethical and safety issues for the clinical use of ESCs and IPSCs [4]. Among adult stem cells, mesenchymal stem/stromal cells (MSCs) are the main seed cells used in regenerative medicine and are an expanding area of research, over the past decade, due to their unique biological properties. These properties cover a large spectrum ranging from immune modulation, local signaling to differentiation abilities. It has been demonstrated in vitro that MSCs can differentiate into osteoblast, chondrocyte, adipocyte, and hepatocytes/cardiomyocytes-like cells. But the use of these cells in numerous preclinical trials raises multiple questions/dilemmas that we will try to address in this review.(i)Are these cells sufficiently defined and are they true stem cells?(ii)Should MSCs isolated from different tissues be considered as equivalent?(iii)What are their major characteristics?(iv)Can we use them in clinical trials and if so what should be the context? 2. How Do We Define Mesenchymal Stem Cells? 2.1. Mesenchymal Stem Cells: Is It Appropriate? Nonhematopoietic cells in the bone marrow were first isolated by Friedenstein et al. in 1968 [5] and defined as spindle-shaped, fibroblast-like multipotent cells capable of colony-forming unit-fibroblast (CFU-F). The studies in the following decade better defined

References

[1]  J. Yu, M. A. Vodyanik, K. Smuga-Otto et al., “Induced pluripotent stem cell lines derived from human somatic cells,” Science, vol. 318, no. 5858, pp. 1917–1920, 2007.
[2]  K. Miura, Y. Okada, T. Aoi et al., “Variation in the safety of induced pluripotent stem cell lines,” Nature Biotechnology, vol. 27, no. 8, pp. 743–745, 2009.
[3]  I. Gutierrez-Aranda, V. Ramos-Mejia, C. Bueno et al., “Human induced pluripotent stem cells develop teratoma more efficiently and faster than human embryonic stem cells regardless the site of injection,” Stem Cells, vol. 28, no. 9, pp. 1568–1570, 2010.
[4]  D. W. Fink Jr., “FDA regulation of stem cell-based products,” Science, vol. 324, no. 5935, pp. 1662–1663, 2009.
[5]  A. J. Friedenstein, K. V. Petrakova, A. I. Kurolesova, and G. P. Frolova, “Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues,” Transplantation, vol. 6, no. 2, pp. 230–247, 1968.
[6]  T. M. Dexter, T. D. Allen, and L. G. Lajtha, “Conditions controlling the proliferation of haemopoietic stem cells in vitro,” Journal of Cellular Physiology, vol. 91, no. 3, pp. 335–344, 1977.
[7]  H. Castro-Malaspina, R. E. Gay, and G. Resnick, “Characterization of human bone marrow fibroblast colony-forming cells (CFU-F) and their progeny,” Blood, vol. 56, no. 2, pp. 289–301, 1980.
[8]  B. R. Clark and A. Keating, “Biology of bone marrow stroma,” Annals of the New York Academy of Sciences, vol. 770, pp. 70–78, 1995.
[9]  M. F. Pittenger, A. M. Mackay, S. C. Beck et al., “Multilineage potential of adult human mesenchymal stem cells,” Science, vol. 284, no. 5411, pp. 143–147, 1999.
[10]  U. Riekstina, R. Muceniece, I. Cakstina, I. Muiznieks, and J. Ancans, “Characterization of human skin-derived mesenchymal stem cell proliferation rate in different growth conditions,” Cytotechnology, vol. 58, no. 3, pp. 153–162, 2008.
[11]  S. T. Hsiao, A. Asgari, Z. Lokmic et al., “Comparative analysis of paracrine factor expression in human adult mesenchymal stem cells derived from bone marrow, adipose, and dermal tissue,” Stem Cells and Development, vol. 21, no. 12, pp. 2189–2203, 2012.
[12]  J. Lyahyai, D. R. Mediano, B. Ranera et al., “Isolation and characterization of ovine mesenchymal stem cells derived from peripheral blood,” BMC Veterinary Research, vol. 8, p. 169, 2012.
[13]  A. Erices, P. Conget, and J. J. Minguell, “Mesenchymal progenitor cells in human umbilical cord blood,” British Journal of Haematology, vol. 109, no. 1, pp. 235–242, 2000.
[14]  H. Peng and J. Huard, “Muscle-derived stem cells for musculoskeletal tissue regeneration and repair,” Transplant Immunology, vol. 12, no. 3-4, pp. 311–319, 2004.
[15]  Y. Zhu, T. Liu, K. Song, X. Fan, X. Ma, and Z. Cui, “Ex vivo expansion of adipose tissue-derived stem cells in spinner flasks,” Biotechnology Journal, vol. 4, no. 8, pp. 1198–1209, 2009.
[16]  P. S. In't Anker, S. A. Scherjon, C. Kleijburg-Van Der Keur et al., “Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta,” Stem Cells, vol. 22, no. 7, pp. 1338–1345, 2004.
[17]  C. M. Raynaud, M. Maleki, R. Lis et al., “Comprehensive characterization of mesenchymal stem cells from human placenta and fetal membrane and their response to osteoactivin stimulation,” Stem Cells International, vol. 2012, Article ID 658356, 13 pages, 2012.
[18]  S. Gronthos, M. Mankani, J. Brahim, P. G. Robey, and S. Shi, “Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 25, pp. 13625–13630, 2000.
[19]  C. Campagnoli, I. A. G. Roberts, S. Kumar, P. R. Bennett, I. Bellantuono, and N. M. Fisk, “Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow,” Blood, vol. 98, no. 8, pp. 2396–2402, 2001.
[20]  M. Dominici, K. Le Blanc, I. Mueller et al., “Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement,” Cytotherapy, vol. 8, no. 4, pp. 315–317, 2006.
[21]  M. E. Bernardo, A. M. Cometa, D. Pagliara et al., “Ex vivo expansion of mesenchymal stromal cells,” Best Practice & Research Clinical Haematology, vol. 24, no. 1, pp. 73–81, 2011.
[22]  P. Mafi, S. Hindocha, R. Mafi, M. Griffin, and W. S. Khan, “Adult mesenchymal stem cells and cell surface characterization—a systematic review of the literature,” The Open Orthopaedics Journal, vol. 5, supplement 2, pp. 253–260, 2011.
[23]  H. Ning, G. Lin, T. F. Lue, and C.-S. Lin, “Mesenchymal stem cell marker Stro-1 is a 75kd endothelial antigen,” Biochemical and Biophysical Research Communications, vol. 413, no. 2, pp. 353–357, 2011.
[24]  M. Tanaka-Douzono, S. Suzu, M. Yamada et al., “Surface protein characterization of human adipose tissue-derived stromal cells,” Journal of Cellular Physiology, vol. 189, no. 1, pp. 54–63, 2001.
[25]  C. C. I. Lee, J. E. Christensen, M. C. Yoder, and A. F. Tarantal, “Clonal analysis and hierarchy of human bone marrow mesenchymal stem and progenitor cells,” Experimental Hematology, vol. 38, no. 1, pp. 46–54, 2010.
[26]  A. Muraglia, R. Cancedda, and R. Quarto, “Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model,” Journal of Cell Science, vol. 113, no. 7, pp. 1161–1166, 2000.
[27]  P. Hematti, “Mesenchymal stromal cells and fibroblasts: a case of mistaken identity?” Cytotherapy, vol. 14, no. 5, pp. 516–521, 2012.
[28]  S. L. Lindsay, S. A. Johnstone, J. C. Mountford et al., “Human mesenchymal stem cells isolated from olfactory biopsies but not bone enhance CNS myelination in vitro,” Glia, vol. 61, no. 3, pp. 368–382, 2013.
[29]  A. A. Ramkisoensing, D. A. Pijnappels, S. F. A. Askar et al., “Human embryonic and fetal Mesenchymal stem cells differentiate toward three different cardiac lineages in contrast to their adult counterparts,” PLoS ONE, vol. 6, no. 9, Article ID e24164, 2011.
[30]  F. J. Adegani, L. Langroudi, E. Arefian, A. Shafiee, P. Dinarvand, and M. Soleimani, “A comparison of pluripotency and differentiation status of four mesenchymal adult stem cells,” Molecular Biology Reports, vol. 40, no. 5, pp. 3693–3703, 2013.
[31]  R. I. Dmitrieva, R. Minullina, A. A. Bilibina, O. V. Tarasova, S. V. Anisimov, and A. Y. Zaritskey, “Bone marrow- and subcutaneous adipose tissue-derived mesenchymal stem cells: differences and similarities,” Cell Cycle, vol. 11, no. 2, pp. 377–383, 2012.
[32]  S. Balasubramanian, P. Venugopal, S. Sundarraj, Z. Zakaria, A. S. Majumdar, and M. Ta, “Comparison of chemokine and receptor gene expression between Wharton's jelly and bone marrow-derived mesenchymal stromal cells,” Cytotherapy, vol. 14, no. 1, pp. 26–33, 2012.
[33]  R. Hass, C. Kasper, S. Bohm, and R. Jacobs, “Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC,” Cell Communication and Signaling, p. 12, 2011.
[34]  I. Manini, L. Gulino, B. Gava et al., “Multi-potent progenitors in freshly isolated and cultured human mesenchymal stem cells: a comparison between adipose and dermal tissue,” Cell and Tissue Research, vol. 344, no. 1, pp. 85–95, 2011.
[35]  Y. Ikegame, K. Yamashita, S.-I. Hayashi et al., “Comparison of mesenchymal stem cells from adipose tissue and bone marrow for ischemic stroke therapy,” Cytotherapy, vol. 13, no. 6, pp. 675–685, 2011.
[36]  M. Strioga, S. Viswanathan, A. Darinskas, O. Slaby, and J. Michalek, “Same or not the same? Comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells,” Stem Cells and Development, vol. 21, no. 14, pp. 2724–2752, 2012.
[37]  R. B. Jakobsen, A. Shahdadfar, F. P. Reinholt, and J. E. Brinchmann, “Chondrogenesis in a hyaluronic acid scaffold: comparison between chondrocytes and MSC from bone marrow and adipose tissue,” Knee Surgery, Sports Traumatology, Arthroscopy, vol. 18, no. 10, pp. 1407–1416, 2010.
[38]  G. Yannarelli, N. Pacienza, L. Cuniberti, J. Medin, J. Davies, and A. Keating, “Brief report: the potential role of epigenetics on multipotent cell differentiation capacity of mesenchymal stromal cells,” Stem Cells, vol. 31, no. 1, pp. 215–220, 2013.
[39]  C. M. Teven, X. Liu, N. Hu et al., “Epigenetic regulation of mesenchymal stem cells: a focus on osteogenic and adipogenic differentiation,” Stem Cells International, vol. 2011, Article ID 201371, 18 pages, 2011.
[40]  K. Le Blanc, L. Tammik, B. Sundberg, S. E. Haynesworth, and O. Ringdén, “Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex,” Scandinavian Journal of Immunology, vol. 57, no. 1, pp. 11–20, 2003.
[41]  P. A. Muraro and A. Uccelli, “Immuno-therapeutic potential of haematopoietic and mesenchymal stem cell transplantation in MS,” Results and Problems in Cell Differentiation, vol. 51, pp. 237–257, 2010.
[42]  A. Uccelli, L. Moretta, and V. Pistoia, “Mesenchymal stem cells in health and disease,” Nature Reviews Immunology, vol. 8, no. 9, pp. 726–736, 2008.
[43]  J. Tolar, K. Le Blanc, A. Keating, and B. R. Blazar, “Concise review: hitting the right spot with mesenchymal stromal cells,” Stem Cells, vol. 28, no. 8, pp. 1446–1455, 2010.
[44]  K. English, A. French, and K. J. Wood, “Mesenchymal stromal cells: facilitators of successful transplantation?” Cell Stem Cell, vol. 7, no. 4, pp. 431–442, 2010.
[45]  T. Yi and S. U. Song, “Immunomodulatory properties of mesenchymal stem cells and their therapeutic applications,” Archives of Pharmacal Research, vol. 35, no. 2, pp. 213–221, 2012.
[46]  E. Soleymaninejadian, K. Pramanik, and E. Samadian, “Immunomodulatory properties of mesenchymal stem cells: cytokines and factors,” American Journal of Reproductive Immunology, vol. 67, no. 1, pp. 1–8, 2012.
[47]  P.-M. Chen, M.-L. Yen, K.-J. Liu, H.-K. Sytwu, and B.-L. Yen, “Immunomodulatory properties of human adult and fetal multipotent mesenchymal stem cells,” Journal of Biomedical Science, vol. 18, no. 1, article 49, 2011.
[48]  B. R. Weil, M. C. Manukyan, J. L. Herrmann et al., “The immunomodulatory properties of mesenchymal stem cells: implications for surgical disease,” Journal of Surgical Research, vol. 167, no. 1, pp. 78–86, 2011.
[49]  M. J. Hoogduijn, F. Popp, R. Verbeek et al., “The immunomodulatory properties of mesenchymal stem cells and their use for immunotherapy,” International Immunopharmacology, vol. 10, no. 12, pp. 1496–1500, 2010.
[50]  R. Abdi, P. Fiorina, C. N. Adra, M. Atkinson, and M. H. Sayegh, “Immunomodulation by mesenchymal stem cells: a potential therapeutic strategy for type 1 diabetes,” Diabetes, vol. 57, no. 7, pp. 1759–1767, 2008.
[51]  S. S. Iyer and M. Rojas, “Anti-inflammatory effects of mesenchymal stem cells: novel concept for future therapies,” Expert Opinion on Biological Therapy, vol. 8, no. 5, pp. 569–581, 2008.
[52]  K. H. Jung, S. U. Song, T. Yi et al., “Human bone marrow-derived clonal mesenchymal stem cells inhibit inflammation and reduce acute pancreatitis in rats,” Gastroenterology, vol. 140, no. 3, pp. 998–1008, 2011.
[53]  G. M. Spaggiari, H. Abdelrazik, F. Becchetti, and L. Moretta, “MSCs inhibit monocyte-derived DC maturation and function by selectively interfering with the generation of immature DCs: central role of MSC-derived prostaglandin E2,” Blood, vol. 113, no. 26, pp. 6576–6583, 2009.
[54]  G. M. Spaggiari, A. Capobianco, H. Abdelrazik, F. Becchetti, M. C. Mingari, and L. Moretta, “Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2,” Blood, vol. 111, no. 3, pp. 1327–1333, 2008.
[55]  G. Ren, L. Zhang, X. Zhao et al., “Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide,” Cell Stem Cell, vol. 2, no. 2, pp. 141–150, 2008.
[56]  F. Liotta, R. Angeli, L. Cosmi et al., “Toll-like receptors 3 and 4 are expressed by human bone marrow-derived mesenchymal stem cells and can inhibit their T-cell modulatory activity by impairing notch signaling,” Stem Cells, vol. 26, no. 1, pp. 279–289, 2008.
[57]  S. L. Tomchuck, K. J. Zwezdaryk, S. B. Coffelt, R. S. Waterman, E. S. Danka, and A. B. Scandurro, “Toll-like receptors on human mesenchymal stem cells drive their migration and immunomodulating responses,” Stem Cells, vol. 26, no. 1, pp. 99–107, 2008.
[58]  R. S. Waterman, S. L. Tomchuck, S. L. Henkle, and A. M. Betancourt, “A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an immunosuppressive MSC2 phenotype,” PLoS ONE, vol. 5, no. 4, Article ID e10088, 2010.
[59]  M. Duijvestein, A. C. W. Vos, H. Roelofs et al., “Autologous bone marrow-derived mesenchymal stromal cell treatment for refractory luminal Crohn's disease: results of a phase I study,” Gut, vol. 59, no. 12, pp. 1662–1669, 2010.
[60]  R. Taléns-Visconti, A. Bonora, R. Jover et al., “Hepatogenic differentiation of human mesenchymal stem cells from adipose tissue in comparison with bone marrow mesenchymal stem cells,” World Journal of Gastroenterology, vol. 12, no. 36, pp. 5834–5845, 2006.
[61]  S. Carrancio, C. Romo, T. Ramos, et al., “Effects of MSC-co-administration and route of delivery on cord blood hematopoietic stem cell engraftment,” Cell Transplant, 2012.
[62]  A. Hofmann, U. Ritz, M. H. Hessmann et al., “Cell viability, osteoblast differentiation, and gene expression are altered in human osteoblasts from hypertrophic fracture non-unions,” Bone, vol. 42, no. 5, pp. 894–906, 2008.
[63]  T. Amemori, P. Jendelová, K. R??i?ková, D. Arboleda, and E. Syková, “Co-transplantation of olfactory ensheathing glia and mesenchymal stromal cells does not have synergistic effects after spinal cord injury in the rat,” Cytotherapy, vol. 12, no. 2, pp. 212–225, 2010.
[64]  C. L. Rackham, P. C. Chagastelles, N. B. Nardi, A. C. Hauge-Evans, P. M. Jones, and A. J. King, “Co-transplantation of islets with mesenchymal stem cells in microcapsules demonstrates graft outcome can be improved in an isolated-graft model of islet transplantation in mice,” Cytotherapy, vol. 15, no. 2, pp. 192–200, 2011.
[65]  F. S. Loffredo, M. L. Steinhauser, J. Gannon, and R. T. Lee, “Bone marrow-derived cell therapy stimulates endogenous cardiomyocyte progenitors and promotes cardiac repair,” Cell Stem Cell, vol. 8, no. 4, pp. 389–398, 2011.
[66]  P. Kebriaei, L. Isola, E. Bahceci et al., “Adult human mesenchymal stem cells added to corticosteroid therapy for the treatment of acute graft-versus-host disease,” Biology of Blood and Marrow Transplantation, vol. 15, no. 7, pp. 804–811, 2009.
[67]  K. Le Blanc, I. Rasmusson, B. Sundberg et al., “Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells,” The Lancet, vol. 363, no. 9419, pp. 1439–1441, 2004.
[68]  O. Ringdén, M. Uzunel, I. Rasmusson et al., “Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease,” Transplantation, vol. 81, no. 10, pp. 1390–1397, 2006.
[69]  E. Zappia, S. Casazza, E. Pedemonte et al., “Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy,” Blood, vol. 106, no. 5, pp. 1755–1761, 2005.
[70]  M. Rafei, P. M. Campeau, A. Aguilar-Mahecha et al., “Mesenchymal stromal cells ameliorate experimental autoimmune encephalomyelitis by inhibiting CD4 Th17 T cells in a CC chemokine ligand 2-dependent manner,” Journal of Immunology, vol. 182, no. 10, pp. 5994–6002, 2009.
[71]  G. Constantin, S. Marconi, B. Rossi et al., “Adipose-derived mesenchymal stem cells ameliorate chronic experimental autoimmune encephalomyelitis,” Stem Cells, vol. 27, no. 10, pp. 2624–2635, 2009.
[72]  B. Yamout, R. Hourani, H. Salti et al., “Bone marrow mesenchymal stem cell transplantation in patients with multiple sclerosis: a pilot study,” Journal of Neuroimmunology, vol. 227, no. 1-2, pp. 185–189, 2010.
[73]  B. G. Jaganathan, V. Tisato, T. Vulliamy et al., “Effects of MSC co-injection on the reconstitution of aplastic anemia patient following hematopoietic stem cell transplantation,” Leukemia, vol. 24, no. 10, pp. 1791–1795, 2010.
[74]  M. Joshi, B. Patil P, Z. He, J. Holgersson, M. Olausson, and S. Sumitran-Holgersson, “Fetal liver-derived mesenchymal stromal cells augment engraftment of transplanted hepatocytes,” Cytotherapy, vol. 14, no. 6, pp. 657–669, 2012.
[75]  A. V. Vanikar, S. D. Dave, U. G. Thakkar, and H. L. Trivedi, “Cotransplantation of adipose tissue-derived insulin-secreting mesenchymal stem cells and hematopoietic stem cells: a novel therapy for insulin-dependent diabetes mellitus,” Stem Cells International, vol. 2010, Article ID 582382, 5 pages, 2010.
[76]  I. Müller, S. Kordowich, C. Holzwarth et al., “Application of multipotent mesenchymal stromal cells in pediatric patients following allogeneic stem cell transplantation,” Blood Cells, Molecules, and Diseases, vol. 40, no. 1, pp. 25–32, 2008.
[77]  S. T. Lee, J. H. Jang, J.-W. Cheong et al., “Treatment of high-risk acute myelogenous leukaemia by myeloablative chemoradiotherapy followed by co-infusion of T cell-depleted haematopoietic stem cells and culture-expanded marrow mesenchymal stem cells from a related donor with one fully mismatched human leucocyte antigen haplotype,” British Journal of Haematology, vol. 118, no. 4, pp. 1128–1131, 2002.
[78]  L. M. Ball, M. E. Bernardo, H. Roelofs et al., “Cotransplantation of ex vivo-expanded mesenchymal stem cells accelerates lymphocyte recovery and may reduce the risk of graft failure in haploidentical hematopoietic stem-cell transplantation,” Blood, vol. 110, no. 7, pp. 2764–2767, 2007.
[79]  C. Seebach, D. Henrich, R. Tewksbury, K. Wilhelm, and I. Marzi, “Number and proliferative capacity of human mesenchymal stem cells are modulated positively in multiple trauma patients and negatively in atrophic nonunions,” Calcified Tissue International, vol. 80, no. 4, pp. 294–300, 2007.
[80]  M. Marcacci, E. Kon, V. Moukhachev et al., “Stem cells associated with macroporous bioceramics for long bone repair: 6- to 7-year outcome of a pilot clinical study,” Tissue Engineering, vol. 13, no. 5, pp. 947–955, 2007.
[81]  R. Quarto, M. Mastrogiacomo, R. Cancedda et al., “Repair of large bone defects with the use of autologous bone marrow stromal cells,” The New England Journal of Medicine, vol. 344, no. 5, pp. 385–386, 2001.
[82]  R. Cancedda, B. Dozin, P. Giannoni, and R. Quarto, “Tissue engineering and cell therapy of cartilage and bone,” Matrix Biology, vol. 22, no. 1, pp. 81–91, 2003.
[83]  E. Kon, A. Muraglia, A. Corsi et al., “Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones,” Journal of Biomedical Materials Research, vol. 49, no. 3, pp. 328–337, 2000.
[84]  G. Pachón-Pe?a, G. Yu, A. Tucker et al., “Stromal stem cells from adipose tissue and bone marrow of age-matched female donors display distinct immunophenotypic profiles,” Journal of Cellular Physiology, vol. 226, no. 3, pp. 843–851, 2011.
[85]  A. Shafiee, E. Seyedjafari, M. Soleimani, N. Ahmadbeigi, P. Dinarvand, and N. Ghaemi, “A comparison between osteogenic differentiation of human unrestricted somatic stem cells and mesenchymal stem cells from bone marrow and adipose tissue,” Biotechnology Letters, vol. 33, no. 6, pp. 1257–1264, 2011.
[86]  C. Scotti, B. Tonnarelli, A. Papadimitropoulos et al., “Recapitulation of endochondral bone formation using human adult mesenchymal stem cells as a paradigm for developmental engineering,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 16, pp. 7251–7256, 2010.
[87]  H. Fan, Y. Hu, C. Zhang et al., “Cartilage regeneration using mesenchymal stem cells and a PLGA-gelatin/chondroitin/hyaluronate hybrid scaffold,” Biomaterials, vol. 27, no. 26, pp. 4573–4580, 2006.
[88]  L. Zheng, J. Sun, X. Chen et al., “In vivo cartilage engineering with collagen hydrogel and allogenous chondrocytes after diffusion chamber implantation in immunocompetent host,” Tissue Engineering Part A, vol. 15, no. 8, pp. 2145–2153, 2009.
[89]  M. Agung, M. Ochi, S. Yanada et al., “Mobilization of bone marrow-derived mesenchymal stem cells into the injured tissues after intraarticular injection and their contribution to tissue regeneration,” Knee Surgery, Sports Traumatology, Arthroscopy, vol. 14, no. 12, pp. 1307–1314, 2006.
[90]  M. Horie, I. Sekiya, T. Muneta et al., “Intra-articular injected synovial stem cells differentiate into meniscal cells directly and promote meniscal regeneration without mobilization to distant organs in rat massive meniscal defect,” Stem Cells, vol. 27, no. 4, pp. 878–887, 2009.
[91]  J. M. Murphy, D. J. Fink, E. B. Hunziker, and F. P. Barry, “Stem cell therapy in a caprine model of osteoarthritis,” Arthritis and Rheumatism, vol. 48, no. 12, pp. 3464–3474, 2003.
[92]  D. D. Frisbie, J. D. Kisiday, C. E. Kawcak, N. M. Werpy, and C. W. McIlwraith, “Evaluation of adipose-derived stromal vascular fraction or bone marrow-derived mesenchymal stem cells for treatment of osteoarthritis,” Journal of Orthopaedic Research, vol. 27, no. 12, pp. 1675–1680, 2009.
[93]  S. Wakitani, K. Imoto, T. Yamamoto, M. Saito, N. Murata, and M. Yoneda, “Human autologous culture expanded bone marrow-mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees,” Osteoarthritis and Cartilage, vol. 10, no. 3, pp. 199–206, 2002.
[94]  C. J. Centeno, D. Busse, J. Kisiday, C. Keohan, M. Freeman, and D. Karli, “Increased knee cartilage volume in degenerative joint disease using percutaneously implanted, autologous mesenchymal stem cells,” Pain Physician, vol. 11, no. 3, pp. 343–353, 2008.
[95]  F. Davatchi, B. S. Abdollahi, M. Mohyeddin, F. Shahram, and B. Nikbin, “Mesenchymal stem cell therapy for knee osteoarthritis. Preliminary report of four patients,” International Journal of Rheumatic Diseases, vol. 14, no. 2, pp. 211–215, 2011.
[96]  U. N?th, A. F. Steinert, and R. S. Tuan, “Technology Insight: adult mesenchymal stem cells for osteoarthritis therapy,” Nature Clinical Practice Rheumatology, vol. 4, no. 7, pp. 371–380, 2008.
[97]  K. Johnson, S. Zhu, M. S. Tremblay et al., “A stem cell-based approach to cartilage repair,” Science, vol. 336, no. 6082, pp. 717–721, 2012.
[98]  Y. Qi, G. Feng, and W. Yan, “Mesenchymal stem cell-based treatment for cartilage defects in osteoarthritis,” Molecular Biology Reports, vol. 39, no. 5, pp. 5683–5689, 2012.
[99]  M. R. Alison, R. Poulsom, R. Jeffery et al., “Hepatocytes from non-hepatic adult stem cells,” Nature, vol. 406, no. 6793, p. 257, 2000.
[100]  H. Kanazawa, Y. Fujimoto, T. Teratani et al., “Bone marrow-derived mesenchymal stem cells ameliorate hepatic ischemia reperfusion injury in a rat model,” PLoS ONE, vol. 6, no. 4, Article ID e19195, 2011.
[101]  A. Banas, T. Teratani, Y. Yamamoto et al., “Rapid hepatic fate specification of adipose-derived stem cells and their therapeutic potential for liver failure,” Journal of Gastroenterology and Hepatology, vol. 24, no. 1, pp. 70–77, 2009.
[102]  B. Parekkadan, D. Van Poll, K. Suganuma et al., “Mesenchymal stem cell-derived molecules reverse fulminant hepatic failure,” PLoS ONE, vol. 2, no. 9, article e941, 2007.
[103]  M. Mohamadnejad, M. Namiri, M. Bagheri et al., “Phase 1 human trial of autologous bone marrow-hematopoietic stem cell transplantation in patients with decompensated cirrhosis,” World Journal of Gastroenterology, vol. 13, no. 24, pp. 3359–3363, 2007.
[104]  C. Toma, M. F. Pittenger, K. S. Cahill, B. J. Byrne, and P. D. Kessler, “Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart,” Circulation, vol. 105, no. 1, pp. 93–98, 2002.
[105]  X. Li, X. Yu, Q. Lin et al., “Bone marrow mesenchymal stem cells differentiate into functional cardiac phenotypes by cardiac microenvironment,” Journal of Molecular and Cellular Cardiology, vol. 42, no. 2, pp. 295–303, 2007.
[106]  T. Wang, Z. Xu, W. Jiang, and A. Ma, “Cell-to-cell contact induces mesenchymal stem cell to differentiate into cardiomyocyte and smooth muscle cell,” International Journal of Cardiology, vol. 109, no. 1, pp. 74–81, 2006.
[107]  S. Makino, K. Fukuda, S. Miyoshi et al., “Cardiomyocytes can be generated from marrow stromal cells in vitro,” Journal of Clinical Investigation, vol. 103, no. 5, pp. 697–705, 1999.
[108]  M. Xu, M. Wani, Y.-S. Dai et al., “Differentiation of bone marrow stromal cells into the cardiac phenotype requires intercellular communication with myocytes,” Circulation, vol. 110, no. 17, pp. 2658–2665, 2004.
[109]  H. Hamamoto, J. H. Gorman III, L. P. Ryan et al., “Allogeneic mesenchymal precursor cell therapy to limit remodeling after myocardial infarction: the effect of cell dosage,” Annals of Thoracic Surgery, vol. 87, no. 3, pp. 794–801, 2009.
[110]  K. H. Schuleri, G. S. Feigenbaum, M. Centola et al., “Autologous mesenchymal stem cells produce reverse remodelling in chronic ischaemic cardiomyopathy,” European Heart Journal, vol. 30, no. 22, pp. 2722–2732, 2009.
[111]  J. A. Dixon, R. C. Gorman, R. E. Stroud et al., “Mesenchymal cell transplantation and myocardial remodeling after myocardial infarction,” Circulation, vol. 120, no. 1, pp. S220–S229, 2009.
[112]  B. Trachtenberg, D. L. Velazquez, A. R. Williams et al., “Rationale and design of the transendocardial injection of autologous human cells (bone marrow or mesenchymal) in chronic ischemic left ventricular dysfunction and heart failure secondary to myocardial infarction (TAC-HFT) trial: a randomized, double-blind, placebo-controlled study of safety and efficacy,” American Heart Journal, vol. 161, no. 3, pp. 487–493, 2011.
[113]  S.-L. Chen, W.-W. Fang, F. Ye et al., “Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction,” American Journal of Cardiology, vol. 94, no. 1, pp. 92–95, 2004.
[114]  J. M. Hare, J. H. Traverse, T. D. Henry et al., “A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction,” Journal of the American College of Cardiology, vol. 54, no. 24, pp. 2277–2286, 2009.
[115]  A. R. Williams, B. Trachtenberg, D. L. Velazquez et al., “Intramyocardial stem cell injection in patients with ischemic cardiomyopathy: functional recovery and reverse remodeling,” Circulation Research, vol. 108, no. 7, pp. 792–796, 2011.
[116]  A. I. Caplan and J. E. Dennis, “Mesenchymal stem cells as trophic mediators,” Journal of Cellular Biochemistry, vol. 98, no. 5, pp. 1076–1084, 2006.
[117]  T. Kinnaird, E. S. Burnett, M. Shou et al., “Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms,” Circulation, vol. 109, no. 12, pp. 1543–1549, 2004.
[118]  S. H. Ranganath, O. Levy, M. S. Inamdar, and J. M. Karp, “Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease,” Cell Stem Cell, vol. 10, no. 3, pp. 244–258, 2012.
[119]  A. Nakamura-Ishizu and T. Suda, “Hematopoietic stem cell niche: an interplay among a repertoire of multiple functional niches,” Biochimica et Biophysica Acta, vol. 1830, no. 2, pp. 2404–2409, 2013.
[120]  F. Nwajei and M. Konopleva, “The bone marrow microenvironment as niche retreats for hematopoietic and leukemic stem cells,” Advances in Hematology, vol. 2013, Article ID 953982, 8 pages, 2013.
[121]  H. Yagi, B. Parekkadan, K. Suganuma et al., “Long-term superior performance of a stem cell/hepatocyte device for the treatment of acute liver failure,” Tissue Engineering Part A, vol. 15, no. 11, pp. 3377–3388, 2009.
[122]  A. Banas, T. Teratani, Y. Yamamoto et al., “IFATS collection: in vivo therapeutic potential of human adipose tissue mesenchymal stem cells after transplantation into mice with liver injury,” Stem Cells, vol. 26, no. 10, pp. 2705–2712, 2008.
[123]  K. Le Blanc and O. Ringdén, “Immunomodulation by mesenchymal stem cells and clinical experience,” Journal of Internal Medicine, vol. 262, no. 5, pp. 509–525, 2007.
[124]  M. Gnecchi, H. He, N. Noiseux et al., “Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement,” FASEB Journal, vol. 20, no. 6, pp. 661–669, 2006.
[125]  M. Gnecchi, Z. Zhang, A. Ni, and V. J. Dzau, “Paracrine mechanisms in adult stem cell signaling and therapy,” Circulation Research, vol. 103, no. 11, pp. 1204–1219, 2008.
[126]  M. Gnecchi, H. He, O. D. Liang et al., “Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells,” Nature Medicine, vol. 11, no. 4, pp. 367–368, 2005.
[127]  S. A. Glynn, M. P. Busch, R. Y. Dodd et al., “Emerging infectious agents and the nation's blood supply: responding to potential threats in the 21st century,” Transfusion, vol. 53, no. 2, pp. 438–454, 2013.
[128]  M. Bláha, P. Mericka, V. Stepánová, et al., “Prevention of infection transmission during stem cell transplantation,” Folia Microbiologica, vol. 51, no. 6, pp. 609–613, 2006.
[129]  Y. Mishima and M. Lotz, “Chemotaxis of human articular chondrocytes and mesenchymal stem cells,” Journal of Orthopaedic Research, vol. 26, no. 10, pp. 1407–1412, 2008.
[130]  J. A. Wood, D. J. Chung, S. A. Park et al., “Periocular and intra-articular injection of canine adipose-derived mesenchymal stem cells: an in vivo imaging and migration study,” Journal of Ocular Pharmacology and Therapeutics, vol. 28, no. 3, pp. 307–317, 2012.
[131]  P. Perrot, D. Heymann, C. Charrier, S. Couillaud, F. Rédini, and F. Duteille, “Extraosseous bone formation obtained by association of mesenchymal stem cells with a periosteal flap in the rat,” Annals of Plastic Surgery, vol. 59, no. 2, pp. 201–206, 2007.
[132]  K. Pelttari, A. Winter, E. Steck et al., “Premature induction of hypertrophy during in vitro chondrogenesis of human mesenchymal stem cells correlates with calcification and vascular invasion after ectopic transplantation in SCID mice,” Arthritis and Rheumatism, vol. 54, no. 10, pp. 3254–3266, 2006.
[133]  M. Breitbach, T. Bostani, W. Roell et al., “Potential risks of bone marrow cell transplantation into infarcted hearts,” Blood, vol. 110, no. 4, pp. 1362–1369, 2007.
[134]  R. Lis, C. Touboul, P. Mirshahi et al., “Tumor associated mesenchymal stem cells protects ovarian cancer cells from hyperthermia through CXCL12,” International Journal of Cancer, vol. 128, no. 3, pp. 715–725, 2011.
[135]  R. Lis, C. Touboul, C. M. Raynaud et al., “Mesenchymal cell interaction with ovarian cancer cells triggers pro-metastatic properties,” PLoS ONE, vol. 7, no. 5, Article ID e38340, 2012.
[136]  L. Sensebé, K. Tarte, J. Galipeau et al., “Limited acquisition of chromosomal aberrations in human adult mesenchymal stromal cells,” Cell Stem Cell, vol. 10, no. 1, pp. 9–10, 2012.
[137]  U. Ben-David, Y. Mayshar, and N. Benvenisty, “Large-scale analysis reveals acquisition of lineage-specific chromosomal aberrations in human adult stem cells,” Cell Stem Cell, vol. 9, no. 2, pp. 97–102, 2011.
[138]  R. Tasso, A. Augello, M. Carida' et al., “Development of sarcomas in mice implanted with mesenchymal stem cells seeded onto bioscaffolds,” Carcinogenesis, vol. 30, no. 1, pp. 150–157, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133