Mesenchymal stem cells (MSCs) are currently being widely investigated both in the lab and in clinical trials for multiple disease states. The differentiation, trophic, and immunomodulatory characteristics of MSCs contribute to their therapeutic effects. Another often overlooked factor related to efficacy is the degree of engraftment. When reported, engraftment is generally low and transient in nature. MSC delivery methods should be tailored to the lesion being treated, which may be local or systemic, and customized to the mechanism of action of the MSCs, which can also be local or systemic. Engraftment efficiency is enhanced by using intra-arterial delivery instead of intravenous delivery, thus avoiding the “first-pass” accumulation of MSCs in the lung. Several methodologies to target MSCs to specific organs are being developed. These cell targeting methodologies focus on the modification of cell surface molecules through chemical, genetic, and coating techniques to promote selective adherence to particular organs or tissues. Future improvements in targeting and delivery methodologies to improve engraftment are expected to improve therapeutic results, extend the duration of efficacy, and reduce the effective (MSC) therapeutic dose. 1. Introduction Mesenchymal stem cells (MSCs) are multipotential adult progenitor cells that have the capacity to differentiate along several mesenchymal lineages, including cartilage, adipose, marrow stroma, and bone tissue [1–3]. Studies have been conducted on the use of MSCs as a therapeutic based on this capacity to differentiate directly into these end-stage phenotypes, including the use of MSCs to promote or augment bone repair [4] and for the repair of cartilage defects [4, 5]. In addition to direct differentiation into end-stage phenotypes, MSCs have also been shown to have a positive therapeutic effect in many repair situations because of their capacity to secrete trophic factors (reviewed in [6]) that contribute to repair via the promotion of vascularization and the inhibition of cell death as well as through the modulation of the immune response. Currently, there are over 160 open studies and 116 closed clinical trials (results retrieved (3rd June 2013) in a search of www.clinicaltrials.gov on the search term “mesenchymal stem cells” and excluding trials with an unknown status and those that were conducted in vitro) that use MSCs to treat a variety of conditions that range from direct formation of bone tissue to treatments for graft versus host disease (GvHD) [7–9], myocardial infarction, brain trauma, and multiple
References
[1]
A. I. Caplan, “Mesenchymal stem cells,” Journal of Orthopaedic Research, vol. 9, no. 5, pp. 641–650, 1991.
[2]
A. J. Friedenstein, “Precursor cells of mechanocytes,” International Review of Cytology, vol. 47, pp. 327–359, 1976.
[3]
J. E. Dennis, A. Merriam, A. Awadallah, J. U. Yoo, B. Johnstone, and A. I. Caplan, “A quadripotential mesenchymal progenitor cell isolated from the marrow of an adult mouse,” Journal of Bone and Mineral Research, vol. 14, no. 5, pp. 700–709, 1999.
[4]
J.-T. Vilquin and P. Rosset, “Mesenchymal stem cells in bone and cartilage repair: current status,” Regenerative Medicine, vol. 1, no. 4, pp. 589–604, 2006.
[5]
F. Veronesi, G. Giavaresi, M. Tschon, V. Borsari, N. Nicoli Aldini, and M. Fini, “Clinical use of bone marrow, bone marrow concentrate, and expanded bone marrow mesenchymal stem cells in cartilage disease,” Stem Cells and Development, vol. 22, pp. 181–192, 2013.
[6]
A. I. Caplan and J. E. Dennis, “Mesenchymal stem cells as trophic mediators,” Journal of Cellular Biochemistry, vol. 98, no. 5, pp. 1076–1084, 2006.
[7]
A. E. Aksu, E. Horibe, J. Sacks et al., “Co-infusion of donor bone marrow with host mesenchymal stem cells treats GVHD and promotes vascularized skin allograft survival in rats,” Clinical Immunology, vol. 127, no. 3, pp. 348–358, 2008.
[8]
K. Le Blanc, F. Frassoni, L. Ball et al., “Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study,” The Lancet, vol. 371, no. 9624, pp. 1579–1586, 2008.
[9]
G. Ren, L. Zhang, X. Zhao et al., “Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide,” Cell Stem Cell, vol. 2, no. 2, pp. 141–150, 2008.
[10]
L. Bai, D. P. Lennon, V. Eaton et al., “Human bone marrow-derived mesenchymal stem cells induce Th2-polarized immune response and promote endogenous repair in animal models of multiple sclerosis,” GLIA, vol. 57, no. 11, pp. 1192–1203, 2009.
[11]
P. Connick, M. Kolappan, C. Crawley et al., “Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: an open-label phase 2a proof-of-concept study,” The Lancet Neurology, vol. 11, no. 2, pp. 150–156, 2012.
[12]
S. M. Millard and N. M. Fisk, “Mesenchymal stem cells for systemic therapy: shotgun approach or magic bullets?” Bioessays, vol. 35, pp. 173–182, 2013.
[13]
A. I. Caplan and D. Correa, “The MSC: an injury drugstore,” Cell Stem Cell, vol. 9, no. 1, pp. 11–15, 2011.
[14]
E. Gonzalez-Rey, M. A. Gonzalez, N. Varela et al., “Human adipose-derived mesenchymal stem cells reduce inflammatory and T cell responses and induce regulatory T cells in vitro in rheumatoid arthritis,” Annals of the Rheumatic Diseases, vol. 69, no. 1, pp. 241–248, 2010.
[15]
M. B. Mueller and R. S. Tuan, “Functional characterization of hypertrophy in chondrogenesis of human mesenchymal stem cells,” Arthritis and Rheumatism, vol. 58, no. 5, pp. 1377–1388, 2008.
[16]
E. Gerdoni, B. Gallo, S. Casazza et al., “Mesenchymal stem cells effectively modulate pathogenic immune response in experimental autoimmune encephalomyelitis,” Annals of Neurology, vol. 61, no. 3, pp. 219–227, 2007.
[17]
E. Zappia, S. Casazza, E. Pedemonte et al., “Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy,” Blood, vol. 106, no. 5, pp. 1755–1761, 2005.
[18]
R. Abdi, P. Fiorina, C. N. Adra, M. Atkinson, and M. H. Sayegh, “Immunomodulation by mesenchymal stem cells: a potential therapeutic strategy for type 1 diabetes,” Diabetes, vol. 57, no. 7, pp. 1759–1767, 2008.
[19]
V. S. Urbán, J. Kiss, J. Kovács et al., “Mesenchymal stem cells cooperate with bone marrow cells in therapy of diabetes,” Stem Cells, vol. 26, no. 1, pp. 244–253, 2008.
[20]
D. García-Olmo, M. García-Arranz, L. Gómez García et al., “Autologous stem cell transplantation for treatment of rectovaginal fistula in perinatal Crohn's disease: a new cell-based therapy,” International Journal of Colorectal Disease, vol. 18, no. 5, pp. 451–454, 2003.
[21]
E. Gonzalez-Rey, P. Anderson, M. A. González, L. Rico, D. Büscher, and M. Delgado, “Human adult stem cells derived from adipose tissue protect against experimental colitis and sepsis,” Gut, vol. 58, no. 7, pp. 929–939, 2009.
[22]
Y. Hayashi, S. Tsuji, M. Tsujii et al., “Topical implantation of mesenchymal stem cells has beneficial effects on healing of experimental colitis in rats,” Journal of Pharmacology and Experimental Therapeutics, vol. 326, no. 2, pp. 523–531, 2008.
[23]
T. Yabana, Y. Arimura, H. Tanaka et al., “Enhancing epithelial engraftment of rat mesenchymal stem cells restores epithelial barrier integrity,” Journal of Pathology, vol. 218, no. 3, pp. 350–359, 2009.
[24]
X. Zhang, C. Jiao, and S. Zhao, “Role of mesenchymal stem cells in immunological rejection of organ transplantation,” Stem Cell Reviews and Reports, vol. 5, no. 4, pp. 402–409, 2010.
[25]
J. M. Karp and G. S. Leng Teo, “Mesenchymal stem cell homing: the devil is in the details,” Cell Stem Cell, vol. 4, no. 3, pp. 206–216, 2009.
[26]
P. Lin, Y. Lin, D. P. Lennon, D. Correa, M. Schluchter, and A. I. Caplan, “Efficient lentiviral transduction of human mesenchymal stem cells that preserves proliferation and differentiation capabilities,” Stem Cells Translational Medicine, vol. 1, pp. 886–897, 2012.
[27]
J. Gao, J. E. Dennis, R. F. Muzic, M. Lundberg, and A. I. Caplan, “The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion,” Cells Tissues Organs, vol. 169, no. 1, pp. 12–20, 2001.
[28]
M. Srinivas, E. H. J. G. Aarntzen, J. W. M. Bulte et al., “Imaging of cellular therapies,” Advanced Drug Delivery Reviews, vol. 62, no. 11, pp. 1080–1093, 2010.
[29]
M. R. Reagan and D. L. Kaplan, “Concise review: mesenchymal stem cell tumor-homing: detection methods in disease model systems,” Stem Cells, vol. 29, no. 6, pp. 920–927, 2011.
[30]
L. Kostura, D. L. Kraitchman, A. M. Mackay, M. F. Pittenger, and J. M. W. Bulte, “Feridex labeling of mesenchymal stem cells inhibits chondrogenesis but not adipogenesis or osteogenesis,” NMR in Biomedicine, vol. 17, no. 7, pp. 513–517, 2004.
[31]
K. Le Blanc, C. Tammik, K. Rosendahl, E. Zetterberg, and O. Ringdén, “HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells,” Experimental Hematology, vol. 31, no. 10, pp. 890–896, 2003.
[32]
B. Maitra, E. Szekely, K. Gjini et al., “Human mesenchymal stem cells support unrelated donor hematopoietic stem cells and suppress T-cell activation,” Bone Marrow Transplantation, vol. 33, no. 6, pp. 597–604, 2004.
[33]
W. T. Tse, J. D. Pendleton, W. M. Beyer, M. C. Egalka, and E. C. Guinan, “Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation,” Transplantation, vol. 75, no. 3, pp. 389–397, 2003.
[34]
A. Bartholomew, C. Sturgeon, M. Siatskas et al., “Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo,” Experimental Hematology, vol. 30, no. 1, pp. 42–48, 2002.
[35]
M. Krampera, L. Cosmi, R. Angeli et al., “Role for interferon-γ in the immunomodulatory activity of human bone marrow mesenchymal stem cells,” Stem Cells, vol. 24, no. 2, pp. 386–398, 2006.
[36]
K. English, F. P. Barry, C. P. Field-Corbett, and B. P. Mahon, “IFN-γ and TNF-α differentially regulate immunomodulation by murine mesenchymal stem cells,” Immunology Letters, vol. 110, no. 2, pp. 91–100, 2007.
[37]
J. M. Ryan, F. Barry, J. M. Murphy, and B. P. Mahon, “Interferon-γ does not break, but promotes the immunosuppressive capacity of adult human mesenchymal stem cells,” Clinical and Experimental Immunology, vol. 149, no. 2, pp. 353–363, 2007.
[38]
R. H. Lee, A. A. Pulin, M. J. Seo et al., “Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6,” Cell Stem Cell, vol. 5, no. 1, pp. 54–63, 2009.
[39]
M. Di Nicola, C. Carlo-Stella, M. Magni et al., “Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli,” Blood, vol. 99, no. 10, pp. 3838–3843, 2002.
[40]
L. Cui, Y. Shuo, W. Liu, N. Li, W. Zhang, and Y. Cao, “Expanded adipose-derived stem cells suppress mixed lymphocyte reaction by secretion of prostaglandin E2,” Tissue Engineering, vol. 13, no. 6, pp. 1185–1195, 2007.
[41]
G. Ren, J. Su, L. Zhang et al., “Species variation in the mechanisms of mesenchymal stem cell-mediated immunosuppression,” Stem Cells, vol. 27, no. 8, pp. 1954–1962, 2009.
[42]
K. English, “Mechanisms of mesenchymal stromal cell immunomodulation,” Immunology and Cell Biology, vol. 91, pp. 19–26, 2013.
[43]
F. Liotta, R. Angeli, L. Cosmi et al., “Toll-like receptors 3 and 4 are expressed by human bone marrow-derived mesenchymal stem cells and can inhibit their T-cell modulatory activity by impairing notch signaling,” Stem Cells, vol. 26, no. 1, pp. 279–289, 2008.
[44]
S. L. Brown, T. E. Riehl, M. R. Walker et al., “Myd88-dependent positioning of Ptgs2-expressing stromal cells maintains colonic epithelial proliferation during injury,” Journal of Clinical Investigation, vol. 117, no. 1, pp. 258–269, 2007.
[45]
Y.-P. Li, S. Paczesny, E. Lauret et al., “Human mesenchymal stem cells license adult CD34+ hemopoietic progenitor cells to differentiate into regulatory dendritic cells through activation of the notch pathway,” Journal of Immunology, vol. 180, no. 3, pp. 1598–1608, 2008.
[46]
B. Zhang, R. Liu, D. Shi et al., “Mesenchymal stem cells induce mature dendritic cells into a novel Jagged-2 dependent regulatory dendritic cell population,” Blood, vol. 113, no. 1, pp. 46–57, 2009.
[47]
G. W. Roddy, J. Y. Oh, R. H. Lee et al., “Action at a distance: systemically administered adult stem/progenitor cells (MSCs) reduce inflammatory damage to the cornea without engraftment and primarily by secretion of TNF-α stimulated gene/protein 6,” Stem Cells, vol. 29, no. 10, pp. 1572–1579, 2011.
[48]
H. Choi, R. H. Lee, N. Bazhanov, J. Y. Oh, and D. J. Prockop, “Anti-inflammatory protein TSG-6 secreted by activated MSCs attenuates zymosan-induced mouse peritonitis by decreasing TLR2/NF-κB signaling in resident macrophages,” Blood, vol. 118, no. 2, pp. 330–338, 2011.
[49]
M. D. Griffin, A. E. Ryan, S. Alagesan, P. Lohan, O. Treacy, and T. Ritter, “Anti-donor immune responses elicited by allogeneic mesenchymal stem cells: what have we learned so far?” Immunology and Cell Biology, vol. 91, pp. 40–51, 2013.
[50]
N. Kotobuki, Y. Katsube, Y. Katou, M. Tadokoro, M. Hirose, and H. Ohgushi, “In vivo survival and osteogenic differentiation of allogeneic rat bone marrow mesenchymal stem cells (MSCs),” Cell Transplantation, vol. 17, no. 6, pp. 705–712, 2008.
[51]
X.-P. Huang, Z. Sun, Y. Miyagi et al., “Differentiation of allogeneic mesenchymal stem cells induces immunogenicity and limits their long-term benefits for myocardial repair,” Circulation, vol. 122, no. 23, pp. 2419–2429, 2010.
[52]
Y. Li and F. Lin, “Mesenchymal stem cells are injured by complement after their contact with serum,” Blood, vol. 120, pp. 3436–3443, 2012.
[53]
L. von Bahr, I. Batsis, G. Moll et al., “Analysis of tissues following mesenchymal stromal cell therapy in humans indicates limited long-term engraftment and no ectopic tissue formation,” Stem Cells, vol. 30, pp. 1575–1578, 2012.
[54]
G. P. Meyer, K. C. Wollert, J. Lotz et al., “Intracoronary bone marrow cell transfer after myocardial infarction: 5-year follow-up from the randomized-controlled BOOST trial,” European Heart Journal, vol. 30, no. 24, pp. 2978–2984, 2009.
[55]
M. Abedin, Y. Tintut, and L. L. Demer, “Mesenchymal stem cells and the artery wall,” Circulation Research, vol. 95, no. 7, pp. 671–676, 2004.
[56]
M. Crisan, S. Yap, L. Casteilla et al., “A perivascular origin for mesenchymal stem cells in multiple human organs,” Cell Stem Cell, vol. 3, no. 3, pp. 301–313, 2008.
[57]
S. Shi and S. Gronthos, “Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp,” Journal of Bone and Mineral Research, vol. 18, no. 4, pp. 696–704, 2003.
[58]
S.-G. Kang, N. Shinojima, A. Hossain et al., “Isolation and perivascular localization of mesenchymal stem cells from mouse brain,” Neurosurgery, vol. 67, no. 3, pp. 711–720, 2010.
[59]
N. Zebardast, D. Lickorish, and J. E. Davies, “Human umbilical cord perivascular cells (HUCPVC): a mesenchymal cell source for dermal wound healing,” Organogenesis, vol. 6, no. 4, pp. 197–203, 2010.
[60]
X. Cai, Y. Lin, P. V. Hauschka, and B. E. Grottkau, “Adipose stem cells originate from perivascular cells,” Biology of the Cell, vol. 103, no. 9, pp. 435–447, 2011.
[61]
A. W. James, J. N. Zara, M. Corselli et al., “An abundant perivascular source of stem cells for bone tissue engineering,” Stem Cells Translational Medicine, vol. 1, pp. 673–684, 2012.
[62]
J. C. Gerlach, P. Over, M. E. Turner et al., “Perivascular mesenchymal progenitors in human fetal and adult liver,” Stem Cells and Development, vol. 21, pp. 3258–3269, 2012.
[63]
S. Gronthos, J. Brahim, W. Li et al., “Stem cell properties of human dental pulp stem cells,” Journal of Dental Research, vol. 81, no. 8, pp. 531–535, 2002.
[64]
P. Bianco, P. G. Robey, and P. J. Simmons, “Mesenchymal stem cells: revisiting history, concepts, and assays,” Cell Stem Cell, vol. 2, no. 4, pp. 313–319, 2008.
[65]
P. Dore-Duffy, C. Owen, R. Balabanov, S. Murphy, T. Beaumont, and J. A. Rafols, “Pericyte migration from the vascular wall in response to traumatic brain injury,” Microvascular Research, vol. 60, no. 1, pp. 55–69, 2000.
[66]
M. A. Maloney, R. A. Lamela, and H. M. Patt, “The question of bone marrow stromal fibroblast traffic,” Annals of the New York Academy of Sciences, vol. 459, pp. 190–197, 1985.
[67]
T. Kitaori, H. Ito, E. M. Schwarz et al., “Stromal cell-derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model,” Arthritis and Rheumatism, vol. 60, no. 3, pp. 813–823, 2009.
[68]
S. Schenk, N. Mal, A. Finan et al., “Monocyte chemotactic protein-3 is a myocardial mesenchymal stem cell homing factor,” Stem Cells, vol. 25, no. 1, pp. 245–251, 2007.
[69]
G. Chamberlain, H. Smith, G. E. Rainger, and J. Middleton, “Mesenchymal stem cells exhibit firm adhesion, crawling, spreading and transmigration across aortic endothelial cells: effects of chemokines and shear,” PLoS ONE, vol. 6, no. 9, Article ID e25663, 2011.
[70]
M. Iwasaki, M. Koyanagi, H. Kossmann et al., “Hepatocyte growth factor mobilizes non-bone marrow-derived circulating mesoangioblasts,” European Heart Journal, vol. 32, no. 5, pp. 627–636, 2011.
[71]
T. Kinnaird, E. S. Burnett, M. Shou et al., “Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms,” Circulation, vol. 109, no. 12, pp. 1543–1549, 2004.
[72]
M. T. Valarmathi, J. M. Davis, M. J. Yost, R. L. Goodwin, and J. D. Potts, “A three-dimensional model of vasculogenesis,” Biomaterials, vol. 30, no. 6, pp. 1098–1112, 2009.
[73]
A. Arthur, A. Zannettino, and S. Gronthos, “The therapeutic applications of multipotential mesenchymal/stromal stem cells in skeletal tissue repair,” Journal of Cellular Physiology, vol. 218, no. 2, pp. 237–245, 2009.
[74]
A. Augello, R. Tasso, S. M. Negrini, R. Cancedda, and G. Pennesi, “Cell therapy using allogeneic bone marrow mesenchymal stem cells prevents tissue damage in collagen-induced arthritis,” Arthritis and Rheumatism, vol. 56, no. 4, pp. 1175–1186, 2007.
[75]
A. I. Caplan, “Osteogenesis imperfecta, rehabilitation medicine, fundamental research and mesenchymal stem cells,” Connective Tissue Research, vol. 31, no. 4, pp. S9–S14, 1995.
[76]
M. T. L. Castelo-Branco, I. D. P. Soares, D. V. Lopes et al., “Intraperitoneal but not intravenous cryopreserved mesenchymal stromal cells home to the inflamed colon and ameliorate experimental colitis,” PLoS ONE, vol. 7, no. 3, Article ID e33360, 2012.
[77]
Y. Tang, K. Shah, S. M. Messerli, E. Snyder, X. Breakefield, and R. Weissleder, “In vivo tracking of neural progenitor cell migration to glioblastomas,” Human Gene Therapy, vol. 14, no. 13, pp. 1247–1254, 2003.
[78]
T. Wilson, C. Stark, J. Holmbom et al., “Fate of bone marrow-derived stromal cells after intraperitoneal infusion or implantation into femoral bone defects in the host animal,” Journal of Tissue Engineering, vol. 2010, Article ID 345806, 2010.
[79]
A. T. Dinh, N. Kubis, Y. Tomita et al., “In vivo imaging with cellular resolution of bone marrow cells transplanted into the ischemic brain of a mouse,” NeuroImage, vol. 31, no. 3, pp. 958–967, 2006.
[80]
H. F. Dvorak, “Tumors: wounds that do not heal: similarities between tumor stroma generation and wound healing,” New England Journal of Medicine, vol. 315, no. 26, pp. 1650–1659, 1986.
[81]
K. Nakamura, Y. Ito, Y. Kawano et al., “Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model,” Gene Therapy, vol. 11, no. 14, pp. 1155–1164, 2004.
[82]
K. T. Chabner, G. B. Adams, J. Qiu et al., “Direct vascular delivery of primitive hematopoietic cells to bone marrow improves localization but not engraftment,” Blood, vol. 103, no. 12, pp. 4685–4686, 2004.
[83]
U. M. Fischer, M. T. Harting, F. Jimenez et al., “Pulmonary passage is a major obstacle for intravenous stem cell delivery: the pulmonary first-pass effect,” Stem Cells and Development, vol. 18, no. 5, pp. 683–691, 2009.
[84]
I. Sekiya, B. L. Larson, J. R. Smith, R. Pochampally, J.-G. Cui, and D. J. Prockop, “Expansion of human adult stem cells from bone marrow stroma: conditions that maximize the yields of early progenitors and evaluate their quality,” Stem Cells, vol. 20, no. 6, pp. 530–541, 2002.
[85]
S. Schrepfer, T. Deuse, H. Reichenspurner, M. P. Fischbein, R. C. Robbins, and M. P. Pelletier, “Stem cell transplantation: the lung barrier,” Transplantation Proceedings, vol. 39, no. 2, pp. 573–576, 2007.
[86]
J. Nystedt, H. Anderson, J. Tikkanen et al., “Cell surface structures influence lung clearance rate of systemically infused mesenchymal stromal cells,” Stem Cells, vol. 31, pp. 317–326, 2013.
[87]
E. M. Horwitz, P. L. Gordon, W. K. K. Koo et al., “Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 13, pp. 8932–8937, 2002.
[88]
E. M. Horwitz, D. J. Prockop, L. A. Fitzpatrick et al., “Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta,” Nature Medicine, vol. 5, no. 3, pp. 309–313, 1999.
[89]
L. Fouillard, A. Chapel, D. Bories et al., “Infusion of allogeneic-related HLA mismatched mesenchymal stem cells for the treatment of incomplete engraftment following autologous haematopoietic stem cell transplantation,” Leukemia, vol. 21, no. 3, pp. 568–570, 2007.
[90]
J. Muller-Ehmsen, “The problem is obvious, the solution is not: numbers do matter in cardiac cell therapy!,” Cardiovascular Research, vol. 96, pp. 208–209, 2012.
[91]
J. Ankrum and J. M. Karp, “Mesenchymal stem cell therapy: two steps forward, one step back,” Trends in Molecular Medicine, vol. 16, no. 5, pp. 203–209, 2010.
[92]
K. Le Blanc, I. Rasmusson, B. Sundberg et al., “Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells,” The Lancet, vol. 363, no. 9419, pp. 1439–1441, 2004.
[93]
F. Arguello, R. B. Baggs, and C. N. Frantz, “A murine model of experimental metastasis to bone and bone marrow,” Cancer Research, vol. 48, no. 23, pp. 6876–6881, 1988.
[94]
F. T?gel, Y. Yang, P. Zhang, Z. Hu, and C. Westenfelder, “Bioluminescence imaging to monitor the in vivo distribution of administered mesenchymal stem cells in acute kidney injury,” American Journal of Physiology, vol. 295, no. 1, pp. F315–F321, 2008.
[95]
F. T?gel, Z. Hu, K. Weiss, J. Isaac, C. Lange, and C. Westenfelder, “Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms,” American Journal of Physiology, vol. 289, no. 1, pp. F31–F42, 2005.
[96]
P. Walczak, J. Zhang, A. A. Gilad et al., “Dual-modality monitoring of targeted intraarterial delivery of mesenchymal stem cells after transient ischemia,” Stroke, vol. 39, no. 5, pp. 1569–1574, 2008.
[97]
M. Janowski, A. Lyczek, C. Engels et al., “Cell size and velocity of injection are major determinants of the safety of intracarotid stem cell transplantation,” Journal of Cerebral Blood Flow and Metabolism, vol. 33, pp. 921–927, 2013.
[98]
L. Li, Q. Jiang, G. Ding et al., “Effects of administration route on migration and distribution of neural progenitor cells transplanted into rats with focal cerebral ischemia, an MRI study,” Journal of Cerebral Blood Flow and Metabolism, vol. 30, no. 3, pp. 653–662, 2010.
[99]
C. Kyriakou, N. Rabin, A. Pizzey, A. Nathwani, and K. Yong, “Factors that influence short-term homing of human bone marrow-derived mesenchymal stem cells in a xenogeneic animal model,” Haematologica, vol. 93, no. 10, pp. 1457–1465, 2008.
[100]
A. Fleck, G. Raines, F. Hawker, et al., “Increased vascular permeability: a major cause of hypoalbuminaemia in disease and injury,” The Lancet, vol. 1, no. 8432, pp. 781–784, 1985.
[101]
L. F. Brown, K.-T. Yeo, B. Berse et al., “Expression of vascular permeability factor (vascular endothelial growth factor) by epidermal keratinocytes during wound healing,” Journal of Experimental Medicine, vol. 176, no. 5, pp. 1375–1379, 1992.
[102]
H. Maeda, J. Wu, T. Sawa, Y. Matsumura, and K. Hori, “Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review,” Journal of Controlled Release, vol. 65, no. 1-2, pp. 271–284, 2000.
[103]
D. J. Prockop, “Repair of tissues by adult stem/progenitor cells (MSCs): controversies, myths, and changing paradigms,” Molecular Therapy, vol. 17, no. 6, pp. 939–946, 2009.
[104]
V. P. Torchilin, “Multifunctional nanocarriers,” Advanced Drug Delivery Reviews, vol. 58, no. 14, pp. 1532–1555, 2006.
[105]
M. T. Stephan and D. J. Irvine, “Enhancing cell therapies from the outside in: cell surface engineering using synthetic nanomaterials,” Nano Today, vol. 6, no. 3, pp. 309–325, 2011.
[106]
A. K. Burnett, “Treatment of acute myeloid leukemia: are we making progress?” Hematology/The Education Program of the American Society of Hematology, vol. 2012, pp. 1–6, 2012.
[107]
R. A. Larson, M. Boogaerts, E. Estey et al., “Antibody-targeted chemotherapy of older patients with acute myeloid leukemia in first relapse using Mylotarg (gemtuzumab ozogamicin),” Leukemia, vol. 16, no. 9, pp. 1627–1636, 2002.
[108]
S. Verma, D. Miles, L. Gianni et al., “Trastuzumab emtansine for HER2-positive advanced breast cancer,” New England Journal of Medicine, vol. 367, pp. 1783–1791, 2012.
[109]
I. K. Ko, T. J. Kean, and J. E. Dennis, “Targeting mesenchymal stem cells to activated endothelial cells,” Biomaterials, vol. 30, no. 22, pp. 3702–3710, 2009.
[110]
I. K. Ko, B.-G. Kim, A. Awadallah et al., “Targeting improves MSC treatment of inflammatory bowel disease,” Molecular Therapy, vol. 18, no. 7, pp. 1365–1372, 2010.
[111]
J. E. Dennis, N. Cohen, V. M. Goldberg, and A. I. Caplan, “Targeted delivery of progenitor cells for cartilage repair,” Journal of Orthopaedic Research, vol. 22, no. 4, pp. 735–741, 2004.
[112]
R. J. Lee, Q. Fang, P. A. Davol et al., “Antibody targeting of stem cells to infarcted myocardium,” Stem Cells, vol. 25, no. 3, pp. 712–717, 2007.
[113]
L. G. Lum, H. Fok, R. Sievers, M. Abedi, P. J. Quesenberry, and R. J. Lee, “Targeting of Lin-Sca+ hematopoietic stem cells with bispecific antibodies to injured myocardium,” Blood Cells, Molecules, and Diseases, vol. 32, no. 1, pp. 82–87, 2004.
[114]
T. C. Zhao, A. Tseng, N. Yano et al., “Targeting human CD34+ hematopoietic stem cells with anti-CD45 X anti-myosin light-chain bispecific antibody preserves cardiac function in myocardial infarction,” Journal of Applied Physiology, vol. 104, no. 6, pp. 1793–1800, 2008.
[115]
S. A. Kim and J. S. Peacock, “The use of palmitate-conjugated protein A for coating cells with artificial receptors which facilitate intercellular interactions,” Journal of Immunological Methods, vol. 158, no. 1, pp. 57–65, 1993.
[116]
A. Chen, G. Zheng, and M. L. Tykocinski, “Hierarchical costimulator thresholds for distinct immune responses: application of a novel two-step Fc fusion protein transfer method,” Journal of Immunology, vol. 164, no. 2, pp. 705–711, 2000.
[117]
M. Sen, D. M. Wankowski, N. K. Garlie et al., “Use of anti-CD3 × anti-HER2/neu bispecific antibody for redirecting cytotoxicity of activated T cells toward HER2/neu+ tumors,” Journal of Hematotherapy and Stem Cell Research, vol. 10, no. 2, pp. 247–260, 2001.
[118]
J. K. Chan, C. A. Hamilton, M. K. Cheung et al., “Enhanced killing of primary ovarian cancer by retargeting autologous cytokine-induced killer cells with bispecific antibodies: a preclinical study,” Clinical Cancer Research, vol. 12, no. 6, pp. 1859–1867, 2006.
[119]
C. W. Gundlach IV, A. Caivano, M. Da Graca Cabreira-Hansen et al., “Synthesis and evaluation of an anti-MLC1 × anti-CD90 bispecific antibody for targeting and retaining bone-marrow-derived multipotent stromal cells in infarcted myocardium,” Bioconjugate Chemistry, vol. 22, no. 8, pp. 1706–1714, 2011.
[120]
V. R. Doppalapudi, J. Huang, D. Liu et al., “Chemical generation of bispecific antibodies,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 52, pp. 22611–22616, 2010.
[121]
Z. Cheng, L. Ou, X. Zhou et al., “Targeted migration of mesenchymal stem cells modified with CXCR4 gene to infarcted myocardium improves cardiac performance,” Molecular Therapy, vol. 16, no. 3, pp. 571–579, 2008.
[122]
D. Zhang, G.-C. Fan, X. Zhou et al., “Over-expression of CXCR4 on mesenchymal stem cells augments myoangiogenesis in the infarcted myocardium,” Journal of Molecular and Cellular Cardiology, vol. 44, no. 2, pp. 281–292, 2008.
[123]
S. W. Cho, H. J. Sun, J.-Y. Yang et al., “Transplantation of mesenchymal stem cells overexpressing RANK-Fc or CXCR4 prevents bone loss in ovariectomized mice,” Molecular Therapy, vol. 17, no. 11, pp. 1979–1987, 2009.
[124]
C.-Y. Lien, K. C.-Y. Ho, O. K. Lee, G. W. Blunn, and Y. Su, “Restoration of bone mass and strength in glucocorticoid-treated mice by systemic transplantation of CXCR4 and Cbfa-1 co-expressing mesenchymal stem cells,” Journal of Bone and Mineral Research, vol. 24, no. 5, pp. 837–848, 2009.
[125]
J. N. Kochenderfer, W. H. Wilson, J. E. Janik et al., “Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19,” Blood, vol. 116, no. 20, pp. 4099–4102, 2010.
[126]
T. S. Park, S. A. Rosenberg, and R. A. Morgan, “Treating cancer with genetically engineered T cells,” Trends in Biotechnology, vol. 29, no. 11, pp. 550–557, 2011.
[127]
L. Xia, J. M. McDaniel, T. Yago, A. Doeden, and R. P. McEver, “Surface fucosylation of human cord blood cells augments binding to P-selectin and E-selectin and enhances engraftment in bone marrow,” Blood, vol. 104, no. 10, pp. 3091–3096, 2004.
[128]
R. Sackstein, J. S. Merzaban, D. W. Cain et al., “Ex vivo glycan engineering of CD44 programs human multipotent mesenchymal stromal cell trafficking to bone,” Nature Medicine, vol. 14, no. 2, pp. 181–187, 2008.
[129]
A. E. Aplin, A. Howe, S. K. Alahari, and R. L. Juliano, “Signal transduction and signal modulation by cell adhesion receptors: the role of integrins, cadherins, immunoglobulin-cell adhesion molecules, and selectins,” Pharmacological Reviews, vol. 50, no. 2, pp. 197–263, 1998.
[130]
D. Sarkar, P. K. Vemula, G. S. L. Teo et al., “Chemical engineering of mesenchymal stem cells to induce a cell rolling response,” Bioconjugate Chemistry, vol. 19, no. 11, pp. 2105–2109, 2008.
[131]
D. Sarkar, J. A. Spencer, J. A. Phillips et al., “Engineered cell homing,” Blood, vol. 118, no. 25, pp. e184–e191, 2011.
[132]
D. Sarkar, P. K. Vemula, W. Zhao, A. Gupta, R. Karnik, and J. M. Karp, “Engineered mesenchymal stem cells with self-assembled vesicles for systemic cell targeting,” Biomaterials, vol. 31, no. 19, pp. 5266–5274, 2010.
[133]
E. Crockett-Torabi, “Selectins and mechanisms of signal transduction,” Journal of Leukocyte Biology, vol. 63, no. 1, pp. 1–14, 1998.
[134]
M. Shadidi and M. Sioud, “Selective targeting of cancer cells using synthetic peptides,” Drug Resistance Updates, vol. 6, no. 6, pp. 363–371, 2003.
[135]
E. Ruoslahti, “Vascular zip codes in angiogenesis and metastasis,” Biochemical Society Transactions, vol. 32, no. 3, pp. 397–402, 2004.
[136]
E. Ruoslahti, S. N. Bhatia, and M. J. Sailor, “Targeting of drugs and nanoparticles to tumors,” Journal of Cell Biology, vol. 188, no. 6, pp. 759–768, 2010.
[137]
T. J. Kean, L. Duesler, R. G. Young et al., “Development of a peptide-targeted, myocardial ischemia-homing, mesenchymal stem cell,” Journal of Drug Targeting, vol. 20, no. 1, pp. 23–32, 2012.
[138]
S. Majumdar and T. J. Siahaan, “Peptide-mediated targeted drug delivery,” Medicinal Research Reviews, vol. 32, no. 3, pp. 637–658, 2012.