全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Cellular Kinetics of Perivascular MSC Precursors

DOI: 10.1155/2013/983059

Full-Text   Cite this paper   Add to My Lib

Abstract:

Mesenchymal stem/stromal cells (MSCs) and MSC-like multipotent stem/progenitor cells have been widely investigated for regenerative medicine and deemed promising in clinical applications. In order to further improve MSC-based stem cell therapeutics, it is important to understand the cellular kinetics and functional roles of MSCs in the dynamic regenerative processes. However, due to the heterogeneous nature of typical MSC cultures, their native identity and anatomical localization in the body have remained unclear, making it difficult to decipher the existence of distinct cell subsets within the MSC entity. Recent studies have shown that several blood-vessel-derived precursor cell populations, purified by flow cytometry from multiple human organs, give rise to bona fide MSCs, suggesting that the vasculature serves as a systemic reservoir of MSC-like stem/progenitor cells. Using individually purified MSC-like precursor cell subsets, we and other researchers have been able to investigate the differential phenotypes and regenerative capacities of these contributing cellular constituents in the MSC pool. In this review, we will discuss the identification and characterization of perivascular MSC precursors, including pericytes and adventitial cells, and focus on their cellular kinetics: cell adhesion, migration, engraftment, homing, and intercellular cross-talk during tissue repair and regeneration. 1. Introduction The availability of mesenchymal stem/stromal cells (MSCs) and MSC-like multipotent stem/progenitor cells marked a major milestone in stem cell therapies [1, 2]. For more than a decade, MSC has been a highly promising stem cell source and extensively investigated for its therapeutic potentials [3, 4]. Unlike embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs), MSCs are inherently more relevant to clinical applications due to the lack of ethical and safety issues, despite lower developmental versatility [5]. MSCs and similar mesodermal stem/progenitor cells have been shown to repair and/or regenerate a wide variety of damaged/defective organs, including bone, cartilage, muscle, heart, and skin [6–10]. MSCs have also been reported to support hematopoiesis and suppress immune reaction after cell/organ transplantation [11–14]. Nevertheless, owing to the nature of MSC isolation by plastic adherence in tissue culture, the native identity and anatomical localization of MSCs have remained unclear for years [15]. Recently, several studies have indicated that MSCs represent a heterogeneous entity in culture, and a number of multipotent

References

[1]  S. P. Bruder, D. Gazit, L. Passi-Even, I. Bab, and A. I. Caplan, “Osteochondral differentiation and the emergence of stage-specific osteogenic cell-surface molecules by bone marrow cells in diffusion chambers,” Bone and Mineral, vol. 11, no. 2, pp. 141–151, 1990.
[2]  P. A. Zuk, M. Zhu, H. Mizuno et al., “Multilineage cells from human adipose tissue: implications for cell-based therapies,” Tissue Engineering, vol. 7, no. 2, pp. 211–228, 2001.
[3]  A. I. Caplan and J. E. Dennis, “Mesenchymal stem cells as trophic mediators,” Journal of Cellular Biochemistry, vol. 98, no. 5, pp. 1076–1084, 2006.
[4]  J. García-Castro, C. Trigueros, J. Madrenas, J. A. Pérez-Simón, R. Rodriguez, and P. Menendez, “Mesenchymal stem cells and their use as cell replacement therapy and disease modelling tool,” Journal of Cellular and Molecular Medicine, vol. 12, no. 6B, pp. 2552–2565, 2008.
[5]  W. Prasongchean and P. Ferretti, “Autologous stem cells for personalised medicine,” New Biotechnology, vol. 29, no. 6, pp. 641–650, 2012.
[6]  A. F. Steinert, L. Rackwitz, F. Gilbert, U. Noth, and R. S. Tuan, “Concise review: the clinical application of mesenchymal stem cells for musculoskeletal regeneration: current status and perspectives,” Stem Cells Translational Medicine, vol. 1, no. 3, pp. 237–247, 2012.
[7]  L. Wu, X. Cai, S. Zhang, M. Karperien, and Y. Lin, “Regeneration of articular cartilage by adipose tissue derived mesenchymal stem cells: perspectives from stem cell biology and molecular medicine,” Journal of Cellular Physiology, vol. 228, no. 5, pp. 938–944, 2013.
[8]  W. M. Jackson, L. J. Nesti, and R. S. Tuan, “Potential therapeutic applications of muscle-derived mesenchymal stem and progenitor cells,” Expert Opinion on Biological Therapy, vol. 10, no. 4, pp. 505–517, 2010.
[9]  C. W. Chen, J. Huard, and B. Péault, “Mesenchymal stem cells and cardiovascular repair,” in Mesenchymal Stem Sells, Y. Xiao, Ed., Nova Science Publishers, New York, NY, USA, 2011.
[10]  W. M. Jackson, L. J. Nesti, and R. S. Tuan, “Concise review: clinical translation of wound healing therapies based on mesenchymal stem cells,” Stem Cells Translational Medicine, vol. 1, no. 1, pp. 44–50, 2012.
[11]  C. Pontikoglou, F. Deschaseaux, L. Sensebé, and H. A. Papadaki, “Bone marrow mesenchymal stem cells: biological properties and their role in hematopoiesis and hematopoietic stem cell transplantation,” Stem Cell Reviews and Reports, vol. 7, no. 3, pp. 569–589, 2011.
[12]  M. E. J. Reinders, T. J. Rabelink, and J. W. de Fijter, “The role of mesenchymal stromal cells in chronic transplant rejection after solid organ transplantation,” Current Opinion in Organ Transplantation, vol. 18, no. 1, pp. 44–50, 2013.
[13]  L. Wang, Y. Zhao, and S. Shi, “Interplay between mesenchymal stem cells and lymphocytes: implications for immunotherapy and tissue regeneration,” Journal of Dental Research, vol. 91, no. 11, pp. 1003–1010, 2012.
[14]  M. E. Bernardo and W. E. Fibbe, “Safety and efficacy of mesenchymal stromal cell therapy in autoimmune disorders,” Annals of the New York Academy of Sciences, vol. 1266, no. 1, pp. 107–117, 2012.
[15]  L. D. S. Meirelles, A. I. Caplan, and N. B. Nardi, “In search of the in vivo identity of mesenchymal stem cells,” Stem Cells, vol. 26, no. 9, pp. 2287–2299, 2008.
[16]  M. Pevsner-Fischer, S. Levin, and D. Zipori, “The origins of mesenchymal stromal cell heterogeneity,” Stem Cell Reviews and Reports, vol. 7, no. 3, pp. 560–568, 2011.
[17]  C.-W. Chen, M. Corselli, B. Péault, and J. Huard, “Human blood-vessel-derived stem cells for tissue repair and regeneration,” Journal of Biomedicine and Biotechnology, vol. 2012, Article ID 597439, 9 pages, 2012.
[18]  B. Sacchetti, A. Funari, S. Michienzi et al., “Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment,” Cell, vol. 131, no. 2, pp. 324–336, 2007.
[19]  M. Tavazoie, L. van der Veken, V. Silva-Vargas et al., “A specialized vascular niche for adult neural stem cells,” Cell Stem Cell, vol. 3, no. 3, pp. 279–288, 2008.
[20]  S. Shi and S. Gronthos, “Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp,” Journal of Bone and Mineral Research, vol. 18, no. 4, pp. 696–704, 2003.
[21]  W. Tang, D. Zeve, J. M. Suh et al., “White fat progenitor cells reside in the adipose vasculature,” Science, vol. 322, no. 5901, pp. 583–586, 2008.
[22]  M. Tavian, B. Zheng, E. Oberlin et al., “The vascular wall as a source of stem cells,” Annals of the New York Academy of Sciences, vol. 1044, pp. 41–50, 2005.
[23]  M. Crisan, S. Yap, L. Casteilla et al., “A perivascular origin for mesenchymal stem cells in multiple human organs,” Cell Stem Cell, vol. 3, no. 3, pp. 301–313, 2008.
[24]  M. Corselli, C. W. Chen, B. Sun, S. Yap, J. P. Rubin, and B. Péault, “The tunica adventitia of human arteries and veins as a source of mesenchymal stem cells,” Stem Cells and Development, vol. 21, no. 8, pp. 1299–1308, 2012.
[25]  B. Zheng, B. Cao, M. Crisan et al., “Prospective identification of myogenic endothelial cells in human skeletal muscle,” Nature Biotechnology, vol. 25, no. 9, pp. 1025–1034, 2007.
[26]  C. B. Ballas, S. P. Zielske, and S. L. Gerson, “Adult bone marrow stem cells for cell and gene therapies: implications for greater use,” Journal of Cellular Biochemistry, vol. 38, pp. 20–28, 2002.
[27]  H. Chao and K. K. Hirschi, “Hemato-vascular origins of endothelial progenitor cells?” Microvascular Research, vol. 79, no. 3, pp. 169–173, 2010.
[28]  Y.-H. Choi, A. Kurtz, and C. Stamm, “Mesenchymal stem cells for cardiac cell therapy,” Human Gene Therapy, vol. 22, no. 1, pp. 3–17, 2011.
[29]  K. C. Russell, D. G. Phinney, M. R. Lacey, B. L. Barrilleaux, K. E. Meyertholen, and K. C. O'Connor, “In vitro high-capacity assay to quantify the clonal heterogeneity in trilineage potential of mesenchymal stem cells reveals a complex hierarchy of lineage commitment,” Stem Cells, vol. 28, no. 4, pp. 788–798, 2010.
[30]  R. L. R. Van, C. E. Bayliss, and D. A. K. Roncari, “Cytological and enzymological characterization of adult human adipocyte precursors in culture,” Journal of Clinical Investigation, vol. 58, no. 3, pp. 699–704, 1976.
[31]  I. Dardick, W. J. Poznanski, I. Waheed, and G. Setterfield, “Ultrastructural observations on differentiating human preadipocytes cultured in vitro,” Tissue and Cell, vol. 8, no. 3, pp. 561–571, 1976.
[32]  P. A. Zuk, M. Zhu, P. Ashjian et al., “Human adipose tissue is a source of multipotent stem cells,” Molecular Biology of the Cell, vol. 13, no. 12, pp. 4279–4295, 2002.
[33]  S. R. Daher, B. H. Johnstone, D. G. Phinney, and K. L. March, “Adipose stromal/stem cells: basic and translational advances: the IFATS collection,” Stem Cells, vol. 26, no. 10, pp. 2664–2665, 2008.
[34]  M. Dominici, K. Le Blanc, I. Mueller et al., “Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement,” Cytotherapy, vol. 8, no. 4, pp. 315–317, 2006.
[35]  J. B. Mitchell, K. McIntosh, S. Zvonic et al., “Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers,” Stem Cells, vol. 24, no. 2, pp. 376–385, 2006.
[36]  C. I. Civin, L. C. Strauss, and C. Brovall, “Antigenic analysis of hematopoiesis. III. A hematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG-1a cells,” Journal of Immunology, vol. 133, no. 1, pp. 157–165, 1984.
[37]  T. Asahara, T. Murohara, A. Sullivan et al., “Isolation of putative progenitor endothelial cells for angiogenesis,” Science, vol. 275, no. 5302, pp. 964–967, 1997.
[38]  C. Sengenès, K. Lolmède, A. Zakaroff-Girard, R. Busse, and A. Bouloumié, “Preadipocytes in the human subcutaneous adipose tissue display distinct features from the adult mesenchymal and hematopoietic stem cells,” Journal of Cellular Physiology, vol. 205, no. 1, pp. 114–122, 2005.
[39]  L. Zimmerlin, V. S. Donnenberg, M. E. Pfeifer et al., “Stromal vascular progenitors in adult human adipose tissue,” Cytometry A, vol. 77, no. 1, pp. 22–30, 2010.
[40]  H. Suga, D. Matsumoto, H. Eto et al., “Functional implications of CD34 expression in human adipose-derived stem/progenitor cells,” Stem Cells and Development, vol. 18, no. 8, pp. 1201–1209, 2009.
[41]  C.-S. Lin, Z.-C. Xin, C.-H. Deng, H. Ning, G. Lin, and T. F. Lue, “Defining adipose tissue-derived stem cells in tissue and in culture,” Histology and Histopathology, vol. 25, no. 6, pp. 807–815, 2010.
[42]  G. Lin, M. Garcia, H. Ning et al., “Defining stem and progenitor cells within adipose tissue,” Stem Cells and Development, vol. 17, no. 6, pp. 1053–1063, 2008.
[43]  H. Li, L. Zimmerlin, K. G. Marra, V. S. Donnenberg, A. D. Donnenberg, and J. P. Rubin, “Adipogenic potential of adipose stem cell subpopulations,” Plastic and Reconstructive Surgery, vol. 128, no. 3, pp. 663–672, 2011.
[44]  K. L. Spalding, E. Arner, P. O. Westermark et al., “Dynamics of fat cell turnover in humans,” Nature, vol. 453, no. 7196, pp. 783–787, 2008.
[45]  M. Witkowska-Zimny and E. Wrobel, “Perinatal sources of mesenchymal stem cells: wharton's jelly, amnion and chorion,” Cellular and Molecular Biology Letters, vol. 16, no. 3, pp. 493–514, 2011.
[46]  R. R. Taghizadeh, K. J. Cetrulo, and C. L. Cetrulo, “Wharton's Jelly stem cells: future clinical applications,” Placenta, vol. 32, no. 4, pp. S311–S315, 2011.
[47]  D. L. Troyer and M. L. Weiss, “Concise review: wharton's Jelly-derived cells are a primitive stromal cell population,” Stem Cells, vol. 26, no. 3, pp. 591–599, 2008.
[48]  V. Kumar, N. Fausto, and A. Abbas, “Robbins and cotran pathologic basis of disease,” in Blood Vessels, chapter 11, Saunders, Philadelphia, Pa, USA, 7th edition, 2004.
[49]  G. Cossu and P. Bianco, “Mesoangioblasts: vascular progenitors for extravascular mesodermal tissues,” Current Opinion in Genetics and Development, vol. 13, no. 5, pp. 537–542, 2003.
[50]  D. Galli, A. Innocenzi, L. Staszewsky et al., “Mesoangioblasts, vessel-associated multipotent stem cells, repair the infarcted heart by multiple cellular mechanisms: a comparison with bone marrow progenitors, fibroblasts, and endothelial cells,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 25, no. 4, pp. 692–697, 2005.
[51]  A. Armulik, A. Abramsson, and C. Betsholtz, “Endothelial/pericyte interactions,” Circulation Research, vol. 97, no. 6, pp. 512–523, 2005.
[52]  D. von Tell, A. Armulik, and C. Betsholtz, “Pericytes and vascular stability,” Experimental Cell Research, vol. 312, no. 5, pp. 623–629, 2006.
[53]  H. K. Rucker, H. J. Wynder, and W. E. Thomas, “Cellular mechanisms of CNS pericytes,” Brain Research Bulletin, vol. 51, no. 5, pp. 363–369, 2000.
[54]  P. Dore-Duffy and J. C. LaManna, “Physiologic angiodynamics in the brain,” Antioxidants and Redox Signaling, vol. 9, no. 9, pp. 1363–1371, 2007.
[55]  F. Kuhnert, B. Y. Y. Tam, B. Sennino et al., “Soluble receptor-mediated selective inhibition of VEGFR and PDGFRβ signaling during physiologic and tumor angiogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 29, pp. 10185–10190, 2008.
[56]  P. Lindahl, B. R. Johansson, P. Levéen, and C. Betsholtz, “Pericyte loss and microaneurysm formation in PDGF-B-deficient mice,” Science, vol. 277, no. 5323, pp. 242–245, 1997.
[57]  M. W. Majesky, X. R. Dong, V. Hoglund, W. M. Mahoney Jr., and G. Daum, “The adventitia: a dynamic interface containing resident progenitor cells,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 31, no. 7, pp. 1530–1539, 2011.
[58]  Y. Hu and Q. Xu, “Adventitial biology: differentiation and function,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 31, no. 7, pp. 1523–1529, 2011.
[59]  Z. Tang, A. Wang, F. Yuan et al., “Differentiation of multipotent vascular stem cells contributes to vascular diseases,” Nature Communications, vol. 3, article 875, 2012.
[60]  Y. Hu, Z. Zhang, E. Torsney et al., “Abundant progenitor cells in the adventitia contribute to atheroscleroses of vein grafts in ApoE-deficient mice,” Journal of Clinical Investigation, vol. 113, no. 9, pp. 1258–1265, 2004.
[61]  Y. Shi, J. E. O'Brien Jr., A. Fard, J. D. Mannion, D. Wang, and A. Zalewski, “Adventitial myofibroblasts contribute to neointimal formation in injured porcine coronary arteries,” Circulation, vol. 94, no. 7, pp. 1655–1664, 1996.
[62]  S. Oparil, S.-J. Chen, Y.-F. Chen, J. N. Durand, L. Allen, and J. A. Thompson, “Estrogen attenuates the adventitial contribution to neointima formation in injured rat carotid arteries,” Cardiovascular Research, vol. 44, no. 3, pp. 608–614, 1999.
[63]  M. Crisan, J. Huard, B. Zheng et al., “Purification and culture of human blood vessel-associated progenitor cells,” in Current Protocols in Stem Cell Biology, John Wiley and Sons, 2007.
[64]  A. Dellavalle, M. Sampaolesi, R. Tonlorenzi et al., “Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells,” Nature Cell Biology, vol. 9, no. 3, pp. 255–267, 2007.
[65]  P. Campagnolo, D. Cesselli, A. Al Haj Zen et al., “Human adult vena saphena contains perivascular progenitor cells endowed with clonogenic and proangiogenic potential,” Circulation, vol. 121, no. 15, pp. 1735–1745, 2010.
[66]  D. Tilki, H.-P. Hohn, B. Ergün, S. Rafii, and S. Ergün, “Emerging biology of vascular wall progenitor cells in health and disease,” Trends in Molecular Medicine, vol. 15, no. 11, pp. 501–509, 2009.
[67]  E. Zengin, F. Chalajour, U. M. Gehling et al., “Vascular wall resident progenitor cells: a source for postnatal vasculogenesis,” Development, vol. 133, no. 8, pp. 1543–1551, 2006.
[68]  M. Okada, T. R. Payne, B. Zheng et al., “Myogenic endothelial cells purified from human skeletal muscle improve cardiac function after transplantation into infarcted myocardium,” Journal of the American College of Cardiology, vol. 52, no. 23, pp. 1869–1880, 2008.
[69]  B. Zheng, C. W. Chen, G. Li et al., “Isolation of myogenic stem cells from cultures of cryopreserved human skeletal muscle,” Cell transplantation, vol. 21, no. 6, pp. 1087–1093, 2012.
[70]  T. S. Park, M. Gavina, C.-W. Chen et al., “Placental perivascular cells for human muscle regeneration,” Stem Cells and Development, vol. 20, no. 3, pp. 451–463, 2011.
[71]  T. Montemurro, G. Andriolo, E. Montelatici et al., “Differentiation and migration properties of human foetal umbilical cord perivascular cells: potential for lung repair,” Journal of Cellular and Molecular Medicine, vol. 15, no. 4, pp. 796–808, 2011.
[72]  N. Zebardast, D. Lickorish, and J. E. Davies, “Human umbilical cord perivascular cells (HUCPVC): a mesenchymal cell source for dermal wound healing,” Organogenesis, vol. 6, no. 4, pp. 197–203, 2010.
[73]  M. M. Carvalho, F. G. Teixeira, R. L. Reis, N. Sousa, and A. J. Salgado, “Mesenchymal stem cells in the umbilical cord: phenotypic characterization, secretome and applications in central nervous system regenerative medicine,” Current Stem Cell Research and Therapy, vol. 6, no. 3, pp. 221–228, 2011.
[74]  E. Jauniaux, G. J. Burton, G. J. Moscoso, and J. Hustin, “Development of the early human placenta: a morphometric study,” Placenta, vol. 12, no. 3, pp. 269–276, 1991.
[75]  A. Bárcena, M. Kapidzic, M. O. Muench et al., “The human placenta is a hematopoietic organ during the embryonic and fetal periods of development,” Developmental Biology, vol. 327, no. 1, pp. 24–33, 2009.
[76]  R. Demir, P. Kaufmann, M. Castellucci, T. Erbengi, and A. Kotowski, “Fetal vasculogenesis and angiogenesis in human placental villi1,” Acta Anatomica, vol. 136, no. 3, pp. 190–203, 1989.
[77]  M. Wareing, “Effects of oxygenation and luminal flow on human placenta chorionic plate blood vessel function,” Journal of Obstetrics and Gynaecology Research, vol. 38, no. 1, pp. 185–191, 2012.
[78]  C. J. P. Jones and G. Desoye, “A new possible function for placental pericytes,” Cells Tissues Organs, vol. 194, no. 1, pp. 76–84, 2011.
[79]  N. M. Castrechini, P. Murthi, N. M. Gude et al., “Mesenchymal stem cells in human placental chorionic villi reside in a vascular Niche,” Placenta, vol. 31, no. 3, pp. 203–212, 2010.
[80]  C. L. Maier, B. R. Shepherd, T. Yi, and J. S. Pober, “Explant outgrowth, propagation and characterization of human pericytes,” Microcirculation, vol. 17, no. 5, pp. 367–380, 2010.
[81]  B. Péault, M. Rudnicki, Y. Torrente et al., “Stem and progenitor cells in skeletal muscle development, maintenance, and therapy,” Molecular Therapy, vol. 15, no. 5, pp. 867–877, 2007.
[82]  B. M. Deasy, Y. Li, and J. Huard, “Tissue engineering with muscle-derived stem cells,” Current Opinion in Biotechnology, vol. 15, no. 5, pp. 419–423, 2004.
[83]  M. Sampaolesi, S. Blot, G. D'Antona et al., “Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs,” Nature, vol. 444, no. 7119, pp. 574–579, 2006.
[84]  B. Cao, B. Zheng, R. J. Jankowski et al., “Muscle stem cells differentiate into haematopoietic lineages but retain myogenic potential,” Nature Cell Biology, vol. 5, no. 7, pp. 640–646, 2003.
[85]  H. Oshima, T. R. Payne, K. L. Urish et al., “Differential myocardial infarct repair with muscle stem cells compared to myoblasts,” Molecular Therapy, vol. 12, no. 6, pp. 1130–1141, 2005.
[86]  A. Uezumi, S.-I. Fukada, N. Yamamoto, S. Takeda, and K. Tsuchida, “Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle,” Nature Cell Biology, vol. 12, no. 2, pp. 143–152, 2010.
[87]  M. P. Pusztaszeri, W. Seelentag, and F. T. Bosman, “Immunohistochemical expression of endothelial markers CD31, CD34, von Willebrand factor, and Fli-1 in normal human tissues,” Journal of Histochemistry and Cytochemistry, vol. 54, no. 4, pp. 385–395, 2006.
[88]  A. W. James, J. N. Zara, M. Corselli et al., “An abundant perivascular source of stem cells for bone tissue engineering,” Stem Cells Translational Medicine, vol. 1, no. 9, pp. 673–684, 2012.
[89]  A. W. James, J. N. Zara, X. Zhang et al., “Perivascular stem cells: a prospectively purified mesenchymal stem cell population for bone tissue engineering,” Stem Cells Translational Medicine, vol. 1, no. 6, pp. 510–519, 2012.
[90]  E. K. Waller, J. Olweus, F. Lund-Johansen et al., “The “common stem cell” hypothesis reevaluated: human fetal bone marrow contains separate populations of hematopoietic and stromal progenitors,” Blood, vol. 85, no. 9, pp. 2422–2435, 1995.
[91]  E. K. Waller, S. Huang, and L. Terstappen, “Changes in the growth properties of CD34+, CD38? bone marrow progenitors during human fetal development,” Blood, vol. 86, no. 2, pp. 710–718, 1995.
[92]  D. J. Simmons, P. Seitz, L. Kidder et al., “Partial characterization of rat marrow stromal cells,” Calcified Tissue International, vol. 48, no. 5, pp. 326–334, 1991.
[93]  S. Kaiser, B. Hackanson, M. Follo et al., “BM cells giving rise to MSC in culture have a heterogeneous CD34 and CD45 phenotype,” Cytotherapy, vol. 9, no. 5, pp. 439–450, 2007.
[94]  R. A. Kopher, V. R. Penchev, M. S. Islam, K. L. Hill, S. Khosla, and D. S. Kaufman, “Human embryonic stem cell-derived CD34+ cells function as MSC progenitor cells,” Bone, vol. 47, no. 4, pp. 718–728, 2010.
[95]  R. Barbet, I. Peiffer, A. Hatzfeld, P. Charbord, and J. A. Hatzfeld, “Comparison of gene expression in human embryonic stem cells, hESC-derived mesenchymal stem cells and human mesenchymal stem cells,” Stem Cells International, vol. 2011, Article ID 368192, 9 pages, 2011.
[96]  M. A. Vodyanik, J. Yu, X. Zhang et al., “A mesoderm-derived precursor for mesenchymal stem and endothelial cells,” Cell Stem Cell, vol. 7, no. 6, pp. 718–729, 2010.
[97]  A. Dar, H. Domev, O. Ben-Yosef et al., “Multipotent vasculogenic pericytes from human pluripotent stem cells promote recovery of murine ischemic limb,” Circulation, vol. 125, no. 1, pp. 87–99, 2012.
[98]  D. O. Traktuev, S. Merfeld-Clauss, J. Li et al., “A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks,” Circulation Research, vol. 102, no. 1, pp. 77–85, 2008.
[99]  H. Yamanishi, S. Fujiwara, and T. Soma, “Perivascular localization of dermal stem cells in human scalp,” Experimental Dermatology, vol. 21, no. 1, pp. 78–80, 2012.
[100]  L. Zimmerlin, V. S. Donnenberg, and A. D. Donnenberg, “Rare event detection and analysis in flow cytometry: bone marrow mesenchymal stem cells, breast cancer stem/progenitor cells in malignant effusions, and pericytes in disaggregated adipose tissue,” Methods in Molecular Biology, vol. 699, pp. 251–273, 2011.
[101]  L. Zimmerlin, V. S. Donnenberg, J. P. Rubin, and A. D. Donnenberg, “Mesenchymal markers on human adipose stem/progenitor cells,” Cytometry A, vol. 83, no. 1, pp. 134–140, 2012.
[102]  L. Zimmerlin, V. S. Donnenberg, and A. D. Donnenberg, “Pericytes: a universal adult tissue stem cell?” Cytometry A, vol. 81, no. 1, pp. 12–14, 2012.
[103]  K. Yoshimura, T. Shigeura, D. Matsumoto et al., “Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates,” Journal of Cellular Physiology, vol. 208, no. 1, pp. 64–76, 2006.
[104]  D. T. Covas, R. A. Panepucci, A. M. Fontes et al., “Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD146+ perivascular cells and fibroblasts,” Experimental Hematology, vol. 36, no. 5, pp. 642–654, 2008.
[105]  A. C. W. Zannettino, S. Paton, A. Arthur et al., “Multipotential human adipose-derived stromal stem cells exhibit a perivascular phenotype in vitro and in vivo,” Journal of Cellular Physiology, vol. 214, no. 2, pp. 413–421, 2008.
[106]  M. Maumus, J.-A. Peyrafitte, R. D'Angelo et al., “Native human adipose stromal cells: localization, morphology and phenotype,” International Journal of Obesity, vol. 35, no. 9, pp. 1141–1153, 2011.
[107]  G. Astori, F. Vignati, S. Bardelli et al., “‘In vitro’ and multicolor phenotypic characterization of cell subpopulations identified in fresh human adipose tissue stromal vascular fraction and in the derived mesenchymal stem cells,” Journal of Translational Medicine, vol. 5, article 55, 2007.
[108]  A. O. Sahin and M. Buitenhuis, “Molecular mechanisms underlying adhesion and migration of hematopoietic stem cells,” Cell Adhesion and Migration, vol. 6, no. 1, pp. 39–48, 2012.
[109]  A. Augello, T. B. Kurth, and C. de Bari, “Mesenchymal stem cells: a perspective from in vitro cultures to in vivo migration and niches,” European Cells and Materials, vol. 20, pp. 121–133, 2010.
[110]  S. K. Kang, I. S. Shin, M. S. Ko, J. Y. Jo, and J. C. Ra, “Journey of mesenchymal stem cells for homing: atrategies to enhance efficacy and safety of stem cell therapy,” Stem Cells International, vol. 2012, Article ID 342968, 11 pages, 2012.
[111]  A. Armulik, G. Genové, and C. Betsholtz, “Pericytes: developmental, physiological, and pathological perspectives, problems, and promises,” Developmental Cell, vol. 21, no. 2, pp. 193–215, 2011.
[112]  A. Arthur, A. Zannettino, R. Panagopoulos et al., “EphB/ephrin-B interactions mediate human MSC attachment, migration and osteochondral differentiation,” Bone, vol. 48, no. 3, pp. 533–542, 2011.
[113]  S. S. Foo, C. J. Turner, S. Adams et al., “Ephrin-B2 controls cell motility and adhesion during blood-vessel-wall assembly,” Cell, vol. 124, no. 1, pp. 161–173, 2006.
[114]  K. Stark, A. Eckart, S. Haidari, et al., “Capillary and arteriolar pericytes attract innate leukocytes exiting through venules and “instruct” them with pattern-recognition and motility programs,” Nature Immunology, vol. 14, no. 1, pp. 41–51, 2013.
[115]  Y. Bordon, “Cell migration: pericytes: route planners,” Nature Reviews Immunology, vol. 13, no. 1, p. 5, 2013.
[116]  M. Hellstr?m, M. Kalén, P. Lindahl, A. Abramsson, and C. Betsholtz, “Role of PDGF-B and PDGFR-β in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse,” Development, vol. 126, no. 14, pp. 3047–3055, 1999.
[117]  M. Enge, M. Bjarneg?rd, H. Gerhardt et al., “Endothelium-specific platelet-derived growth factor-B ablation mimics diabetic retinopathy,” EMBO Journal, vol. 21, no. 16, pp. 4307–4316, 2002.
[118]  A. Abramsson, P. Lindblom, and C. Betsholtz, “Endothelial and nonendothelial sources of PDGF-B regulate pericyte recruitment and influence vascular pattern formation in tumors,” Journal of Clinical Investigation, vol. 112, no. 8, pp. 1142–1151, 2003.
[119]  S. Ejaz, “Importance of pericytes and mechanisms of pericyte loss during diabetes retinopathy,” Diabetes, Obesity and Metabolism, vol. 10, no. 1, pp. 53–63, 2008.
[120]  K. le Blanc, “Immunomodulatory effects of fetal and adult mesenchymal stem cells,” Cytotherapy, vol. 5, no. 6, pp. 485–489, 2003.
[121]  L. B. Ware and M. A. Matthay, “Keratinocyte and hepatocyte growth factors in the lung: roles in lung development, inflammation, and repair,” The American Journal of Physiology, vol. 282, no. 5, pp. L924–L940, 2002.
[122]  G. F. Curley, M. Hayes, B. Ansari et al., “Mesenchymal stem cells enhance recovery and repair following ventilator-induced lung injury in the rat,” Thorax, vol. 67, no. 6, pp. 496–501, 2012.
[123]  C.-W. Chen, E. Montelatici, M. Crisan et al., “Perivascular multi-lineage progenitor cells in human organs: regenerative units, cytokine sources or both?” Cytokine and Growth Factor Reviews, vol. 20, no. 5-6, pp. 429–434, 2009.
[124]  M. Takeoka, W. F. Ward, H. Pollack, D. W. Kamp, and R. J. Panos, “KGF facilitates repair of radiation-induced DNA damage in alveolar epithelial cells,” The American Journal of Physiology, vol. 272, no. 6, pp. L1174–L1180, 1997.
[125]  B. M. Strem, K. C. Hicok, M. Zhu et al., “Multipotential differentiation of adipose tissue-derived stem cells,” Keio Journal of Medicine, vol. 54, no. 3, pp. 132–141, 2005.
[126]  D. Matsumoto, K. Sato, K. Gonda et al., “Cell-assisted lipotransfer: supportive use of human adipose-derived cells for soft tissue augmentation with lipoinjection,” Tissue Engineering, vol. 12, no. 12, pp. 3375–3382, 2006.
[127]  P. van Pham, K. H.-T. Bui, D. Q. Ngo, L. T. Khuat, and N. K. Phan, “Transplantation of nonexpanded adipose stromal vascular fraction and platelet-rich plasma for articular cartilage injury treatment in mice model,” Journal of Medical Engineering, vol. 2013, Article ID 832396, 7 pages, 2013.
[128]  L. Cai, B. H. Johnstone, T. G. Cook et al., “IFATS collection: human adipose tissue-derived stem cells induce angiogenesis and nerve sprouting following myocardial infarction, in conjunction with potent preservation of cardiac function,” Stem Cells, vol. 27, no. 1, pp. 230–237, 2009.
[129]  U. Kim, D.-G. Shin, J.-S. Park et al., “Homing of adipose-derived stem cells to radiofrequency catheter ablated canine atrium and differentiation into cardiomyocyte-like cells,” International Journal of Cardiology, vol. 146, no. 3, pp. 371–378, 2011.
[130]  A. Banas, T. Teratani, Y. Yamamoto et al., “IFATS collection: in vivo therapeutic potential of human adipose tissue mesenchymal stem cells after transplantation into mice with liver injury,” Stem Cells, vol. 26, no. 10, pp. 2705–2712, 2008.
[131]  D. H. Kim, C. M. Je, J. Y. Sin, and J. S. Jung, “Effect of partial hepatectomy on in vivo engraftment after intravenous administration of human adipose tissue stromal cells in mouse,” Microsurgery, vol. 23, no. 5, pp. 424–431, 2003.
[132]  Y. M. Kim, Y. S. Choi, J. W. Choi et al., “Effects of systemic transplantation of adipose tissue-derived stem cells on olfactory epithelium regeneration,” Laryngoscope, vol. 119, no. 5, pp. 993–999, 2009.
[133]  W. Xing, D. Zhimei, Z. Liming et al., “IFATS collection: the conditioned media of adipose stromal cells protect against hypoxia-ischemia-induced brain damage in neonatal rats,” Stem Cells, vol. 27, no. 2, pp. 478–488, 2009.
[134]  K.-S. Cho, H.-K. Park, H.-Y. Park et al., “IFATS collection: immunomodulatory effects of adipose tissue-derived stem cells in an allergic rhinitis mouse model,” Stem Cells, vol. 27, no. 1, pp. 259–265, 2009.
[135]  P. Sacerdote, S. Niada, S. Franchi et al., “Systemic administration of human adipose-derived stem cells reverts nociceptive hypersensitivity in an experimental model of neuropathy,” Stem Cells and Development, vol. 22, no. 8, pp. 1252–1263, 2013.
[136]  S. Marconi, G. Castiglione, E. Turano et al., “Human adipose-derived mesenchymal stem cells systemically injected promote peripheral nerve regeneration in the mouse model of sciatic crush,” Tissue Engineering A, vol. 18, no. 11-12, pp. 1264–1272, 2012.
[137]  B. Levi, A. W. James, E. R. Nelson et al., “Studies in adipose-derived stromal cells: migration and participation in repair of cranial injury after systemic injection,” Plastic and Reconstructive Surgery, vol. 127, no. 3, pp. 1130–1140, 2011.
[138]  N. M. Vieira, M. Valadares, E. Zucconi et al., “Human adipose-derived mesenchymal stromal cells injected systemically into GRMD dogs without immunosuppression are able to reach the host muscle and express human dystrophin,” Cell Transplantation, vol. 21, no. 7, pp. 1407–1417, 2012.
[139]  N. M. Vieira, C. R. Bueno Jr., V. Brandalise et al., “SJL dystrophic mice express a significant amount of human muscle proteins following systemic delivery of human adipose-derived stromal cells without immunosuppression,” Stem Cells, vol. 26, no. 9, pp. 2391–2398, 2008.
[140]  S. J. Baek, S. K. Kang, and J. C. Ra, “In vitro migration capacity of human adipose tissue-derived mesenchymal stem cells reflects their expression of receptors for chemokines and growth factors,” Experimental and Molecular Medicine, vol. 43, no. 10, pp. 596–603, 2011.
[141]  C. Garrovo, N. Bergamin, D. Bates et al., “In vivo tracking of murine adipose tissue-derived multipotent adult stem cells and ex vivo cross-validation,” International Journal of Molecular Imaging, vol. 2013, Article ID 426961, 13 pages, 2013.
[142]  N. Kakudo, S. Kushida, K. Suzuki et al., “Effects of transforming growth factor-beta1 on cell motility, collagen gel contraction, myofibroblastic differentiation, and extracellular matrix expression of human adipose-derived stem cell,” Human Cell, vol. 25, no. 4, pp. 87–95, 2012.
[143]  P. R. Baraniak and T. C. McDevitt, “Stem cell paracrine actions and tissue regeneration,” Regenerative Medicine, vol. 5, no. 1, pp. 121–143, 2010.
[144]  L. Casteilla, V. Planat-Benard, P. Laharrague, and B. Cousin, “Adipose-derived stromal cells: their identity and uses in clinical trials, an update,” World Journal of Stem Cells, vol. 3, no. 4, pp. 25–33, 2011.
[145]  S. H. Lee, S. Y. Jin, J. S. Song, K. K. Seo, and K. H. Cho, “Paracrine effects of adipose-derived stem cells on keratinocytes and dermal fibroblasts,” Annals of Dermatology, vol. 24, no. 2, pp. 136–143, 2012.
[146]  L. Hu, J. Zhao, J. Liu, N. Gong, and L. Chen, “Effects of adipose stem cell-conditioned medium on the migration of vascular endothelial cells, fibroblasts and keratinocytes,” Experimental and Therapeutic Medicine, vol. 5, no. 3, pp. 701–706, 2013.
[147]  S. S. Collawn, N. Sanjib Banerjee, J. de la Torre, L. Vasconez, and L. T. Chow, “Adipose-derived stromal cells accelerate wound healing in an organotypic raft culture model,” Annals of Plastic Surgery, vol. 68, no. 5, pp. 501–504, 2012.
[148]  K. M. Moon, Y. H. Park, J. S. Lee et al., “The effect of secretory factors of adipose-derived stem cells on human keratinocytes,” International Journal of Molecular Sciences, vol. 13, no. 1, pp. 1239–1257, 2012.
[149]  X. Fu, L. Fang, H. Li, X. Li, B. Cheng, and Z. Sheng, “Adipose tissue extract enhances skin wound healing,” Wound Repair and Regeneration, vol. 15, no. 4, pp. 540–548, 2007.
[150]  A. E. Karnoub, A. B. Dash, A. P. Vo et al., “Mesenchymal stem cells within tumour stroma promote breast cancer metastasis,” Nature, vol. 449, no. 7162, pp. 557–563, 2007.
[151]  A. Nakamizo, F. Marini, T. Amano et al., “Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas,” Cancer Research, vol. 65, pp. 3307–3318, 2005.
[152]  C. Pendleton, Q. Li, D. A. Chesler, K. Yuan, H. Guerrero-Cazares, and A. Quinones-Hinojosa, “Mesenchymal stem cells derived from adipose tissue vs bone marrow: in vitro comparison of their tropism towards gliomas,” PLoS ONE, vol. 8, no. 3, Article ID e58198, 2013.
[153]  M. Lamfers, S. Idema, F. van Milligen et al., “Homing properties of adipose-derived stem cells to intracerebral glioma and the effects of adenovirus infection,” Cancer Letters, vol. 274, no. 1, pp. 78–87, 2009.
[154]  L. Kucerova, V. Altanerova, M. Matuskova, S. Tyciakova, and C. Altaner, “Adipose tissue-derived human mesenchymal stem cells mediated prodrug cancer gene therapy,” Cancer Research, vol. 67, no. 13, pp. 6304–6313, 2007.
[155]  I. T. Cavarretta, V. Altanerova, M. Matuskova, L. Kucerova, Z. Culig, and C. Altaner, “Adipose tissue-derived mesenchymal stem cells expressing prodrug-converting enzyme inhibit human prostate tumor growth,” Molecular Therapy, vol. 18, no. 1, pp. 223–231, 2010.
[156]  F. L. Muehlberg, Y.-H. Song, A. Krohn et al., “Tissue-resident stem cells promote breast cancer growth and metastasis,” Carcinogenesis, vol. 30, no. 4, pp. 589–597, 2009.
[157]  S. Pinilla, E. Alt, F. J. Abdul Khalek et al., “Tissue resident stem cells produce CCL5 under the influence of cancer cells and thereby promote breast cancer cell invasion,” Cancer Letters, vol. 284, no. 1, pp. 80–85, 2009.
[158]  B. Sun, K.-H. Roh, J.-R. Park et al., “Therapeutic potential of mesenchymal stromal cells in a mouse breast cancer metastasis model,” Cytotherapy, vol. 11, no. 3, pp. 289–298, 2009.
[159]  B. Cousin, E. Ravet, S. Poglio et al., “Adult stromal cells derived from human adipose tissue provoke pancreatic cancer cell death both in vitro and in vivo,” PLoS ONE, vol. 4, no. 7, Article ID e6278, 2009.
[160]  S. Tottey, M. Corselli, E. M. Jeffries, R. Londono, B. Peault, and S. F. Badylak, “Extracellular matrix degradation products and low-oxygen conditions enhance the regenerative potential of perivascular stem cells,” Tissue Engineering A, vol. 17, no. 1-2, pp. 37–44, 2011.
[161]  B. Annabi, Y.-T. Lee, S. Turcotte et al., “Hypoxia promotes murine bone-marrow-derived stromal cell migration and tube formation,” Stem Cells, vol. 21, no. 3, pp. 337–347, 2003.
[162]  R. K. Assoian and M. A. Schwartz, “Coordinate signaling by integrins and receptor tyrosine kinases in the regulation of G1 phase cell-cycle progression,” Current Opinion in Genetics and Development, vol. 11, no. 1, pp. 48–53, 2001.
[163]  I. Hunger-Glaser, R. S. Fan, E. Perez-Salazar, and E. Rozengurt, “PDGF and FGF induce focal adhesion kinase (FAK) phosphorylation at Ser-910: dissociation from Tyr-397 phosphorylation and requirement for ERK activation,” Journal of Cellular Physiology, vol. 200, no. 2, pp. 213–222, 2004.
[164]  C. Huang, K. Jacobson, and M. D. Schaller, “MAP kinases and cell migration,” Journal of Cell Science, vol. 117, no. 20, pp. 4619–4628, 2004.
[165]  I. Rosová, M. Dao, B. Capoccia, D. Link, and J. A. Nolta, “Hypoxic preconditioning results in increased motility and improved therapeutic potential of human mesenchymal stem cells,” Stem Cells, vol. 26, no. 8, pp. 2173–2182, 2008.
[166]  S. Neuss, E. Becher, M. W?ltje, L. Tietze, and W. Jahnen-Dechent, “Functional expression of HGF and HGF receptor/c-met in adult human mesenchymal stem cells suggests a role in cell mobilization, tissue repair, and wound healing,” Stem Cells, vol. 22, no. 3, pp. 405–414, 2004.
[167]  H. Liu, W. Xue, G. Ge et al., “Hypoxic preconditioning advances CXCR4 and CXCR7 expression by activating HIF-1α in MSCs,” Biochemical and Biophysical Research Communications, vol. 401, no. 4, pp. 509–515, 2010.
[168]  C. W. Chen, M. Okada, J. D. Proto, X. Gao, et al., “Human pericytes for ischemic heart repair,” Stem Cells, vol. 31, no. 2, pp. 305–316, 2013.
[169]  R. Katare, F. Riu, K. Mitchell et al., “Transplantation of human pericyte progenitor cells improves the repair of infarcted heart through activation of an angiogenic program involving micro-RNA-132,” Circulation Research, vol. 109, no. 8, pp. 894–906, 2011.
[170]  A. Dellavalle, G. Maroli, D. Covarello et al., “Pericytes resident in postnatal skeletal muscle differentiate into muscle fibres and generate satellite cells,” Nature Communications, vol. 2, no. 1, article 499, 2011.
[171]  M. Pierro, L. Ionescu, T. Montemurro, A. Vadivel, et al., “Short-term, long-term and paracrine effect of human umbilical cord-derived stem cells in lung injury prevention and repair in experimental bronchopulmonary dysplasia,” Thorax, vol. 68, no. 5, pp. 475–484, 2013.
[172]  M. Corselli, C. J. Chin, C. Parekh, A. Sahaghian, et al., “Perivascular support of human hematopoietic stem/progenitor cells,” Blood, vol. 121, no. 15, pp. 2891–2901, 2013.
[173]  X. Zhang, B. Péault, W. Chen et al., “The nell-1 growth factor stimulates bone formation by purified human perivascular cells,” Tissue Engineering A, vol. 17, no. 19-20, pp. 2497–2509, 2011.
[174]  E. Chavakis, C. Urbich, and S. Dimmeler, “Homing and engraftment of progenitor cells: a prerequisite for cell therapy,” Journal of Molecular and Cellular Cardiology, vol. 45, no. 4, pp. 514–522, 2008.
[175]  R. H. Lee, A. A. Pulin, M. J. Seo et al., “Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6,” Cell Stem Cell, vol. 5, no. 1, pp. 54–63, 2009.
[176]  A. Askarinam, A. W. James, J. N. Zara et al., “Human perivascular stem cells show enhanced osteogenesis and vasculogenesis with nel-like molecule I protein,” Tissue Engineering A, vol. 19, no. 11-12, pp. 1386–1397, 2013.
[177]  X. Zhang, K. Ting, C. M. Bessette et al., “Nell-1, a key functional mediator of Runx2, partially rescues calvarial defects in Runx2+/? mice,” Journal of Bone and Mineral Research, vol. 26, no. 4, pp. 777–791, 2011.
[178]  T. Kitaori, H. Ito, E. M. Schwarz et al., “Stromal cell-derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model,” Arthritis and Rheumatism, vol. 60, no. 3, pp. 813–823, 2009.
[179]  N. Song, Y. Huang, H. Shi et al., “Overexpression of platelet-derived growth factor-BB increases tumor pericyte content via stromal-derived factor-1α/CXCR4 axis,” Cancer Research, vol. 69, no. 15, pp. 6057–6064, 2009.
[180]  E. Chavakis, M. Koyanagi, and S. Dimmeler, “Enhancing the outcome of cell therapy for cardiac repair: progress from bench to bedside and back,” Circulation, vol. 121, no. 2, pp. 325–335, 2010.
[181]  A. N. Stratman, A. E. Schwindt, K. M. Malotte, and G. E. Davis, “Endothelial-derived PDGF-BB and HB-EGF coordinately regulate pericyte recruitment during vasculogenic tube assembly and stabilization,” Blood, vol. 116, no. 22, pp. 4720–4730, 2010.
[182]  A. N. Stratman, K. M. Malotte, R. D. Mahan, M. J. Davis, and G. E. Davis, “Pericyte recruitment during vasculogenic tube assembly stimulates endothelial basement membrane matrix formation,” Blood, vol. 114, no. 24, pp. 5091–5101, 2009.
[183]  H. Gerhardt and C. Betsholtz, “Endothelial-pericyte interactions in angiogenesis,” Cell and Tissue Research, vol. 314, no. 1, pp. 15–23, 2003.
[184]  L. Díaz-Flores, R. Gutiérrez, J. F. Madrid et al., “Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche,” Histology and Histopathology, vol. 24, no. 7, pp. 909–969, 2009.
[185]  D. E. Sims, “The pericyte-A review,” Tissue and Cell, vol. 18, no. 2, pp. 153–174, 1986.
[186]  K. Gaengel, G. Genové, A. Armulik, and C. Betsholtz, “Endothelial-mural cell signaling in vascular development and angiogenesis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 29, no. 5, pp. 630–638, 2009.
[187]  G. Rajashekhar, D. O. Traktuev, W. C. Roell, B. H. Johnstone, S. Merfeld-Clauss, B. van Natta, et al., “IFATS collection: adipose stromal cell differentiation is reduced by endothelial cell contact and paracrine communication: role of canonical Wnt signaling,” Stem Cells, vol. 26, no. 10, pp. 2674–2681, 2008.
[188]  F. A. Saleh, M. Whyte, P. Ashton, and P. G. Genever, “Regulation of mesenchymal stem cell activity by endothelial cells,” Stem Cells and Development, vol. 20, no. 3, pp. 391–403, 2011.
[189]  F. A. Saleh, M. Whyte, and P. G. Genever, “Effects of endothelial cells on human mesenchymal stem cell activity in a three-dimensional in vitro model,” Journal of European Cells and Materials, vol. 22, pp. 242–257, 2011.
[190]  Y. Xue, Z. Xing, S. Hellem, K. Arvidson, and K. Mustafa, “Endothelial cells influence the osteogenic potential of bone marrow stromal cells,” BioMedical Engineering Online, vol. 8, article 34, 2009.
[191]  D. Kaigler, P. H. Krebsbach, E. R. West, K. Horger, Y. C. Huang, and D. J. Mooney, “Endothelial cell modulation of bone marrow stromal cell osteogenic potential,” FASEB Journal, vol. 19, no. 6, pp. 665–667, 2005.
[192]  H. Li, R. Daculsi, M. Grellier, R. Bareille, C. Bourget, and J. Amedee, “Role of neural-cadherin in early osteoblastic differentiation of human bone marrow stromal cells cocultured with human umbilical vein endothelial cells,” The American Journal of Physiology, vol. 299, no. 2, pp. 422–430, 2010.
[193]  M. Grellier, N. Ferreira-Tojais, C. Bourget, R. Bareille, F. Guillemot, and J. Amedee, “Role of vascular endothelial growth factor in the communication between human osteoprogenitors and endothelial cells,” Journal of Cellular Biochemistry, vol. 106, no. 3, pp. 390–398, 2009.
[194]  T. Meury, S. Verrier, and M. Alini, “Human endothelial cells inhibit BMSC differentiation into mature osteoblasts in vitro by interfering with osterix expression,” Journal of Cellular Biochemistry, vol. 98, no. 4, pp. 992–1006, 2006.
[195]  F. Villars, B. Guillotin, T. Amedee, S. Dutoya, L. Bordenave, R. Bareille, et al., “Effect of HUVEC on human osteoprogenitor cell differentiation needs heterotypic gap junction communication,” The American Journal of Physiology, vol. 282, no. 4, pp. 775–785, 2002.
[196]  F. Villars, L. Bordenave, R. Bareille, and J. Amedee, “Effect of human endothelial cells on human bone marrow stromal cell phenotype: role of VEGF?” Journal of Cellular Biochemistry, vol. 79, no. 4, pp. 672–685, 2000.
[197]  B. Guillotin, C. Bourget, M. Remy-Zolgadri, R. Bareille, P. Fernandez, V. Conrad, et al., “Human primary endothelial cells stimulate human osteoprogenitor cell differentiation,” Cellular Physiology and Biochemistry, vol. 14, no. 4–6, pp. 325–332, 2004.
[198]  U. Ozerdem and W. B. Stallcup, “Early contribution of pericytes to angiogenic sprouting and tube formation,” Angiogenesis, vol. 6, no. 3, pp. 241–249, 2003.
[199]  U. Ozerdem, K. A. Grako, K. Dahlin-Huppe, E. Monosov, and W. B. Stallcup, “NG2 proteoglycan is expressed exclusively by mural cells during vascular morphogenesis,” Developmental Dynamics, vol. 222, no. 2, pp. 218–227, 2001.
[200]  L. P. Reynolds, A. T. Grazul-Bilska, and D. A. Redmer, “Angiogenesis in the corpus luteum,” Endocrine, vol. 12, no. 1, pp. 1–9, 2000.
[201]  M. Enge, M. Bjarneg?rd, H. Gerhardt et al., “Endothelium-specific platelet-derived growth factor-B ablation mimics diabetic retinopathy,” EMBO Journal, vol. 21, no. 16, pp. 4307–4316, 2002.
[202]  K. K. Hirschi, S. A. Rohovsky, L. H. Beck, S. R. Smith, and P. A. D'Amore, “Endothelial cells modulate the proliferation of mural cell precursors via platelet-derived growth factor-BB and heterotypic cell contact,” Circulation Research, vol. 84, no. 3, pp. 298–305, 1999.
[203]  A. Blocki, Y. Wang, M. Koch et al., “Not all MSCs can act as pericytes: functional in vitro assays to distinguish pericytes from other mesenchymal stem cells in angiogenesis,” Stem Cells and Development, vol. 22, no. 17, 2013.
[204]  M. Corselli, C.-W. Chen, M. Crisan, L. Lazzari, and B. Péault, “Perivascular ancestors of adult multipotent stem cells,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 30, no. 6, pp. 1104–1109, 2010.
[205]  A. Ehninger and A. Trumpp, “The bone marrow stem cell niche grows up: mesenchymal stem cells and macrophages move in,” Journal of Experimental Medicine, vol. 208, no. 3, pp. 421–428, 2011.
[206]  S. Ergün, D. Tilki, and D. Klein, “Vascular wall as a reservoir for different types of stem and progenitor cells,” Antioxidants and Redox Signaling, vol. 15, no. 4, pp. 981–995, 2011.
[207]  A. I. Caplan, “All MSCs are pericytes?” Cell Stem Cell, vol. 3, no. 3, pp. 229–230, 2008.
[208]  A. M. Müller, A. Mehrkens, D. J. Sch?fer et al., “Towards an intraoperative engineering of osteogenic and vasculogenic grafts from the stromal vascular fraction of human adipose tissue,” European Cells and Materials, vol. 19, pp. 127–135, 2010.
[209]  V. Marthiens, I. Kazanis, L. Moss, K. Long, and C. Ffrench-Constant, “Adhesion molecules in the stem cell niche: more than just staying in shape?” Journal of Cell Science, vol. 123, no. 10, pp. 1613–1622, 2010.
[210]  J. P. Kirton, F. L. Wilkinson, A. E. Canfield, and M. Y. Alexander, “Dexamethasone downregulates calcification-inhibitor molecules and accelerates osteogenic differentiation of vascular pericytes: implications for vascular calcification,” Circulation Research, vol. 98, no. 10, pp. 1264–1272, 2006.
[211]  S. Mathews, R. Bhonde, P. K. Gupta, and S. Totey, “Extracellular matrix protein mediated regulation of the osteoblast differentiation of bone marrow derived human mesenchymal stem cells,” Differentiation, vol. 84, no. 2, pp. 185–192, 2012.
[212]  S. H. Ranganath, O. Levy, M. S. Inamdar, and J. M. Karp, “Harnessing the mesenchymal stem cell secretome for the treatment of cardiovascular disease,” Cell Stem Cell, vol. 10, no. 3, pp. 244–258, 2012.
[213]  I. Takada, A. P. Kouzmenko, and S. Kato, “PPAR-γ signaling crosstalk in mesenchymal stem cells,” PPAR Research, vol. 2010, Article ID 341671, 6 pages, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133