全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Wnt1 Accelerates an Ex Vivo Expansion of Human Cord Blood CD34+CD38? Cells

DOI: 10.1155/2013/909812

Full-Text   Cite this paper   Add to My Lib

Abstract:

Cord blood hematopoietic stem cells (CB-HSCs) transplantation has been increasing gradually with facing the limitation of insufficient quantity of HSCs in each CB unit. Therefore, efficient expansion methods which can maintain stem cell characteristics are needed. In this study, umbilical CB-CD34+ cells were cultured in two different cytokine cocktails: 4 factors (4F?=?Flt3-L, SCF, IL-6, and TPO) and 5 factors (5F?=?Wnt1?+?4F) in both serum and serum-free media. The data revealed that the best condition to accelerate an expansion of CD34+CD38? cells was serum-free culture condition supplemented with 5F (5F KSR). This condition yielded 24.3?±?2.1 folds increase of CD34+CD38? cells. The expanded cells exhibited CD34+ CD38? CD133+ CD71low CD33low CD3? CD19? markers, expressed nanog, oct3/4, c-myc, and sox2 genes, and maintained differentiation potential into lymphoid, erythroid and myeloid lineages. The achievement of CD34+CD38? cells expansion may overcome an insufficient quantity of the cells leading to the improvement of the stem cell transplantation. Altogether, our findings highlight the role of Wnt1 and the new culture condition in stimulating hematopoietic stem/progenitor cells expansion which may offer a new therapeutic avenue for cord blood transplantation, regenerative medicine, stem cell bank applications, and other clinical applications in the future. 1. Introduction Hematopoietic stem cells (HSCs, CD34+CD38?) obtained from umbilical cord blood (UCB) have been studied extensively in stem cell research for advanced cellular therapies [1]. Cord blood (CB) contains HSCs expressing low immunogenicity which render CB to be the promised source of stem cells for transplantation [2]. Moreover, CB transplantation displays advantages over bone marrow and mobilized peripheral blood transplantations in the aspects of noninvasive collect procedure, richness in hematopoietic stem/progenitor content [3], and lower incidence of acute graft-versus-host disease [4]. However, the quantity of HSCs is limited in a single CB unit and may raise the risk of engraftment failure, especially in the adult transplantation [5]. Thus, an increase in HSCs population without changing in their phenotype and losing their repopulating ability is required for successful clinical transplantation. These obstacles, therefore, constitute a challenge to researchers to overcome. The majority of publications aim to expand CD34+ cells rather than CD34+CD38? cells expansion. However, CD34+CD38? cells indeed conserve more primitive HSCs population, which contain more efficiency to

References

[1]  A. Gratwohl and H. Baldomero, “European survey on clinical use of cord blood for hematopoietic and non-hematopoietic indications,” Transfusion and Apheresis Science, vol. 42, no. 3, pp. 265–275, 2010.
[2]  E. Gluckman, “The therapeutic potential of fetal and neonatal hematopoietic stem cells,” New England Journal of Medicine, vol. 335, no. 24, pp. 1839–1840, 1996.
[3]  M. Urashima, Y. Hoshi, A. Shishikura et al., “Umbilical cord blood as a rich source of immature hematopoietic stem cells,” Acta Paediatrica Japonica, vol. 36, no. 6, pp. 649–655, 1994.
[4]  M. L. MacMillan, D. J. Weisdorf, C. G. Brunstein et al., “Acute graft-versus-host disease after unrelated donor umbilical cord blood transplantation: analysis of risk factors,” Blood, vol. 113, no. 11, pp. 2410–2415, 2009.
[5]  A. Stanevsky, A. Shimoni, R. Yerushalmi, and A. Nagler, “Double umbilical cord blood transplant: more than a cell dose?” Leukemia and Lymphoma, vol. 51, no. 6, pp. 975–982, 2010.
[6]  Y. Sera, A. C. LaRue, O. Moussa et al., “Hematopoietic stem cell origin of adipocytes,” Experimental Hematology, vol. 37, no. 9, pp. 1108–e4, 2009.
[7]  C. Reali, F. Scintu, R. Pillai et al., “Differentiation of human adult CD34+ stem cells into cells with a neural phenotype: role of astrocytes,” Experimental Neurology, vol. 197, no. 2, pp. 399–406, 2006.
[8]  F. Ishikawa, H. Shimazu, L. D. Shultz et al., “Purified human hematopoietic stem cells contribute to the generation of cardiomyocytes through cell fusion,” The FASEB Journal, vol. 20, no. 7, pp. 950–952, 2006.
[9]  S. Sellamuthu, R. Manikandan, R. Thiagarajan et al., “In vitro trans-differentiation of human umbilical cord derived hematopoietic stem cells into hepatocyte like cells using combination of growth factors for cell based therapy,” Cytotechnology, vol. 63, no. 3, pp. 259–268, 2011.
[10]  T. Jazedje, M. Secco, N. M. Vieira et al., “Stem cells from umbilical cord blood do have myogenic potential, with and without differentiation induction in vitro,” Journal of Translational Medicine, vol. 7, article 6, 2009.
[11]  M. Pesce, A. Orlandi, M. G. Iachininoto et al., “Myoendothelial differentiation of human umbilical cord blood-derived stem cells in ischemic limb tissues,” Circulation Research, vol. 93, no. 5, pp. e51–e62, 2003.
[12]  M. Mehrotra, M. Rosol, M. Ogawa, and A. C. LaRue, “Amelioration of a mouse model of osteogenesis imperfecta with hematopoietic stem cell transplantation: microcomputed tomography studies,” Experimental Hematology, vol. 38, no. 7, pp. 593–602, 2010.
[13]  H. Minamiguchi, F. Ishikawa, P. A. Fleming et al., “Transplanted human cord blood cells generate amylase-producing pancreatic acinar cells in engrafted mice,” Pancreas, vol. 36, no. 2, pp. e30–e35, 2008.
[14]  Q.-L. Hao, A. J. Shah, F. T. Thiemann, E. M. Smogorzewska, and G. M. Crooks, “A functional comparison of CD34+CD38- cells in cord blood and bone marrow,” Blood, vol. 86, no. 10, pp. 3745–3753, 1995.
[15]  M. Bhatia, J. C. Y. Wang, U. Kapp, D. Bonnet, and J. E. Dick, “Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 10, pp. 5320–5325, 1997.
[16]  S. Mishima, A. Nagai, S. Abdullah et al., “Effective ex vivo expansion of hematopoietic stem cells using osteoblast-differentiated mesenchymal stem cells is CXCL12 dependent,” European Journal of Haematology, vol. 84, no. 6, pp. 538–546, 2010.
[17]  Y. Babaie, R. Herwig, B. Greber et al., “Analysis of Oct4-dependent transcriptional networks regulating self-renewal and pluripotency in human embryonic stem cells,” Stem Cells, vol. 25, no. 2, pp. 500–510, 2007.
[18]  M. Y. Lee, H. W. Lim, S. H. Lee, and H. J. Han, “Smad, PI3K/Akt, and wnt-dependent signaling pathways are involved in BMP-4-induced ESC self-renewal,” Stem Cells, vol. 27, no. 8, pp. 1858–1868, 2009.
[19]  M. Kinder, C. Wei, S. G. Shelat et al., “Hematopoietic stem cell function requires 12/15-lipoxygenase-dependent fatty acid metabolism,” Blood, vol. 115, no. 24, pp. 5012–5022, 2010.
[20]  J.-Y. Ahn, G. Park, J.-S. Shim, J.-W. Lee, and I.-H. Oh, “Intramarrow injection of β-catenin-activated, but not na?ve mesenchymal stromal cells stimulates self-renewal of hematopoietic stem cells in bone marrow,” Experimental and Molecular Medicine, vol. 42, no. 2, pp. 122–131, 2010.
[21]  T. C. Luis, F. Weerkamp, B. A. E. Naber et al., “Wnt3a deficiency irreversibly impairs hematopoietic stem cell self-renewal and leads to defects in progenitor cell differentiation,” Blood, vol. 113, no. 3, pp. 546–554, 2009.
[22]  T. Nikolova, M. Wu, K. Brumbarov et al., “WNT-conditioned media differentially affect the proliferation and differentiation of cord blood-derived CD133+ cells in vitro,” Differentiation, vol. 75, no. 2, pp. 100–111, 2007.
[23]  A. Pessina, A. Bonomi, F. Sisto et al., “CD45+/CD133+ positive cells expanded from umbilical cord blood expressing PDX-1 and markers of pluripotency,” Cell Biology International, vol. 34, no. 8, pp. 783–790, 2010.
[24]  S. Yao, S. Chen, J. Clark et al., “Long-term self-renewal and directed differentiation of human embryonic stem cells in chemically defined conditions,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 18, pp. 6907–6912, 2006.
[25]  C. Pereira, E. Clarke, and J. Damen, “Hematopoietic colony-forming cell assays,” Methods in Molecular Biology, vol. 407, pp. 177–208, 2007.
[26]  I. Koutna, M. Peterkova, P. Simara, S. Stejskal, L. Tesarova, and M. Kozubek, “Proliferation and differentiation potential of CD133+ and CD34+ populations from the bone marrow and mobilized peripheral blood,” Annals of Hematology, vol. 90, no. 2, pp. 127–137, 2011.
[27]  S. A. Boxall, G. P. Cook, D. Pearce et al., “Haematopoietic repopulating activity in human cord blood CD133+ quiescent cells,” Bone Marrow Transplantation, vol. 43, no. 8, pp. 627–635, 2009.
[28]  C. Y. Ito, D. C. Kirouac, G. J. Madlambayan, M. Yu, I. Rogers, and P. W. Zandstra, “The AC133+CD38-, but not the rhodamine-low, phenotype tracks LTC-IC and SRC function in human cord blood ex vivo expansion cultures,” Blood, vol. 115, no. 2, pp. 257–260, 2010.
[29]  L. Gammaitoni, K. C. Weisel, M. Gunetti et al., “Elevated telomerase activity and minimal telomere loss in cord blood long-term cultures with extensive stem cell replication,” Blood, vol. 103, no. 12, pp. 4440–4448, 2004.
[30]  W. Piacibello, F. Sanavio, L. Garetto et al., “Extensive amplification and self-renewal of human primitive hematopoietic stem cells from cord blood,” Blood, vol. 89, no. 8, pp. 2644–2653, 1997.
[31]  W. Piacibello, L. Gammaitoni, S. Bruno et al., “Negative influence of IL3 on the expansion of human cord blood in vivo long-term repopulating stem cells,” Journal of Hematotherapy and Stem Cell Research, vol. 9, no. 6, pp. 945–956, 2000.
[32]  T. Ueda, K. Tsuji, H. Yoshino et al., “Expansion of human NOD/SCID-repopulating cells by stem cell factor, Flk2/Flt3 ligand, thrombopoietin, IL-6, and soluble IL-6 receptor,” Journal of Clinical Investigation, vol. 105, no. 7, pp. 1013–1021, 2000.
[33]  L.-F. Seet, E. Teng, Y.-S. Lai et al., “Valproic acid enhances the engraftability of human umbilical cord blood hematopoietic stem cells expanded under serum-free conditions,” European Journal of Haematology, vol. 82, no. 2, pp. 124–132, 2009.
[34]  P. S. Woll, J. K. Morris, M. S. Painschab et al., “Wnt signaling promotes hematoendothelial cell development from human embryonic stem cells,” Blood, vol. 111, no. 1, pp. 122–131, 2008.
[35]  B. Murdoch, K. Chadwick, M. Martin et al., “Wnt-5A augments repopulating capacity and primitive hematopoietic development of human blood stem cells in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 6, pp. 3422–3427, 2003.
[36]  N. Sato, L. Meijer, L. Skaltsounis, P. Greengard, and A. H. Brivanlou, “Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor,” Nature Medicine, vol. 10, no. 1, pp. 55–63, 2004.
[37]  J. J. Trowbridge, B. Guezguez, R. T. Moon, and M. Bhatia, “Wnt3a activates dormant c-Kit- bone marrow-derived cells with short-term multilineage hematopoietic reconstitution capacity,” Stem Cells, vol. 28, no. 8, pp. 1379–1389, 2010.
[38]  T. Reya, A. W. Duncan, L. Ailles et al., “A role for Wnt signalling in self-renewal of haematopoietic stem cells,” Nature, vol. 423, no. 6938, pp. 409–414, 2003.
[39]  T. W. Austin, G. P. Solar, F. C. Ziegler, L. Liem, and W. Matthews, “A role for the Wnt gene family in hematopoiesis: expansion of multilineage progenitor cells,” Blood, vol. 89, no. 10, pp. 3624–3635, 1997.
[40]  A. W. Duncan, F. M. Rattis, L. N. DiMascio et al., “Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance,” Nature Immunology, vol. 6, no. 3, pp. 314–322, 2005.
[41]  S. Masui, Y. Nakatake, Y. Toyooka et al., “Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells,” Nature Cell Biology, vol. 9, no. 6, pp. 625–635, 2007.
[42]  I. Chambers, D. Colby, M. Robertson et al., “Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells,” Cell, vol. 113, no. 5, pp. 643–655, 2003.
[43]  V. Kashyap, N. C. Rezende, K. B. Scotland et al., “Regulation of Stem cell pluripotency and differentiation involves a mutual regulatory circuit of the Nanog, OCT4, and SOX2 pluripotency transcription factors with polycomb Repressive Complexes and Stem Cell microRNAs,” Stem Cells and Development, vol. 18, no. 7, pp. 1093–1108, 2009.
[44]  I. McNiece, R. Jones, S. I. Bearman et al., “Ex vivo expanded peripheral blood progenitor cells provide rapid neutrophil recovery after high-dose chemotherapy in patients with breast cancer,” Blood, vol. 96, no. 9, pp. 3001–3007, 2000.
[45]  E. J. Shpall, R. Quinones, R. Giller et al., “Transplantation of ex vivo expanded cord blood,” Biology of Blood and Marrow Transplantation, vol. 8, no. 7, pp. 368–376, 2002.
[46]  V. M. Sangeetha, V. P. Kale, and L. S. Limaye, “Expansion of cord blood CD34+ cells in presence of zVADfmk and zLLYfmk improved their in vitro functionality and in vivo engraftment in NOD/SCID mouse,” PLoS ONE, vol. 5, no. 8, Article ID e12221, 2010.
[47]  C. Delaney, S. Heimfeld, C. Brashem-Stein, H. Voorhies, R. L. Manger, and I. D. Bernstein, “Notch-mediated expansion of human cord blood progenitor cells capable of rapid myeloid reconstitution,” Nature Medicine, vol. 16, no. 2, pp. 232–236, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133