全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Autologous Bone Marrow Mononuclear Cell Therapy for Autism: An Open Label Proof of Concept Study

DOI: 10.1155/2013/623875

Full-Text   Cite this paper   Add to My Lib

Abstract:

Cellular therapy is an emerging therapeutic modality with a great potential for the treatment of autism. Recent findings show that the major underlying pathogenetic mechanisms of autism are hypoperfusion and immune alterations in the brain. So conceptually, cellular therapy which facilitates counteractive processes of improving perfusion by angiogenesis and balancing inflammation by immune regulation would exhibit beneficial clinical effects in patients with autism. This is an open label proof of concept study of autologous bone marrow mononuclear cells (BMMNCs) intrathecal transplantation in 32 patients with autism followed by multidisciplinary therapies. All patients were followed up for 26 months (mean 12.7). Outcome measures used were ISAA, CGI, and FIM/Wee-FIM scales. Positron Emission Tomography-Computed Tomography (PET-CT) scan recorded objective changes. Out of 32 patients, a total of 29 (91%) patients improved on total ISAA scores and 20 patients (62%) showed decreased severity on CGI-I. The difference between pre- and postscores was statistically significant ( ) on Wilcoxon matched-pairs signed rank test. On CGI-II 96% of patients showed global improvement. The efficacy was measured on CGI-III efficacy index. Few adverse events including seizures in three patients were controlled with medications. The encouraging results of this leading clinical study provide future directions for application of cellular therapy in autism. 1. Introduction Autism spectrum disorders (ASD) are a group of heterogeneous neurodevelopmental disorders characterized by deficits in verbal and nonverbal communication, social interaction, and presence of stereotypical repetitive behavior. The genetic, environmental, and immunological factors have been attributed as underlying causes, though its exact etiology is unknown. The incidence of autism has increased to a great extent, which may be due to increased awareness leading to an early and accurate diagnosis or due to perinatal complications, genetic factors, environmental factors, and lifestyle changes. Presently, the worldwide incidence is 12 per 1000 children [1]. Despite its increasing rate, currently autism remains untreatable. The available options of behavioral therapy and pharmacological and supportive nutritional treatments are only palliative. Medical therapy is directed towards the neuropsychiatric disorders associated with ASDs. Commonly prescribed medicines are selective serotonin reuptake inhibitors, antipsychotics, mood stabilizers, and psychostimulants. Methylphenidate may be used to treat attention

References

[1]  P. Kopetz and E. Endowed, “Autism worldwide: prevalence, perceptions, acceptance, action,” Journal of Social Sciences, vol. 8, no. 2, pp. 196–201, 2012.
[2]  S. Myers and C. Johnson, “American academy of pediatrics council on children with disabilities. Management of children with autism spectrum disorders,” Pediatrics, vol. 120, no. 5, pp. 1162–1182, 2007.
[3]  S. Gray, “Gene therapy and neurodevelopmental disorders,” Neuropharmacology, vol. 68, pp. 136–142, 2012.
[4]  T. E. Ichim, F. Solano, E. Glenn et al., “Stem cell therapy for autism,” Journal of Translational Medicine, vol. 5, p. 30, 2007.
[5]  D. Siniscalco, “Stem cell research: an opportunity for autism spectrum disorders treatment,” Autism, vol. 2, p. 2, 2012.
[6]  Y. Fujita, M. Ihara, T. Ushiki et al., “Early protective effect of bone marrow mononuclear cells against ischemic white matter damage through augmentation of cerebral blood flow,” Stroke, vol. 41, no. 12, pp. 2938–2943, 2010.
[7]  K. Prasad, S. Mohanty, R. Bhatia, et al., “Autologous intravenous bone marrow mononuclear cell therapy for patients with subacute ischemic stroke: a pilot study,” Indian Journal of Medical Research, vol. 136, no. 2, pp. 221–228, 2012.
[8]  L. F. Geffner, P. Santacruz, M. Izurieta et al., “Administration of autologous bone marrow stem cells into spinal cord injury patients via multiple routes is safe and improves their quality of life: comprehensive case studies,” Cell Transplantation, vol. 17, no. 12, pp. 1277–1293, 2008.
[9]  A. Sharma, N. Gokulchandran, G. Chopra et al., “Administration of autologous bone marrow-derived mononuclear cells in children with incurable neurological disorders and injury is safe and improves their quality of life,” Cell Transplantation, vol. 21, supplement 1, pp. S79–S90, 2012.
[10]  G. Chen, Y. Wang, Z. Xu, et al., “Neural stem cell-like cells derived from autologous bone mesenchymal stem cells for the treatment of patients with cerebral palsy,” Journal of Translational Medicine, vol. 26, no. 11, p. 21, 2013.
[11]  A. A. Khan, N. Parveen, V. S. Mahaboob et al., “Safety and efficacy of autologous bone marrow stem cell transplantation through hepatic artery for the treatment of chronic liver failure: a preliminary study,” Transplantation Proceedings, vol. 40, no. 4, pp. 1140–1144, 2008.
[12]  S. Prabhakar, N. Marwaha, V. Lal, R. Sharma, R. Rajan, and N. Khandelwal, “Autologous bone marrow-derived stem cells in amyotrophic lateral sclerosis: a pilot study,” Neurology India, vol. 60, no. 5, pp. 465–469, 2012.
[13]  N. A. Kishk, H. Gabr, S. Hamdy et al., “Case control series of intrathecal autologous bone marrow mesenchymal stem cell therapy for chronic spinal cord injury,” Neurorehabilitation and Neural Repair, vol. 24, no. 8, pp. 702–708, 2010.
[14]  R. V. Carlson, K. M. Boyd, and D. J. Webb, “The revision of the declaration of Helsinki: past, present and future,” British Journal of Clinical Pharmacology, vol. 57, no. 6, pp. 695–713, 2004.
[15]  I. Petit, M. Szyper-Kravitz, A. Nagler et al., “G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4,” Nature Immunology, vol. 3, no. 7, pp. 687–694, 2002.
[16]  B. Zhu and S. Murthy, “Stem cell separation technologies,” Current Opinion in Chemical Engineering, vol. 2, no. 1, pp. 3–7, 2013.
[17]  A. Khan, S. R. Khan, E. B. Shankles, and N. L. Polissar, “Relative sensitivity of the Montgomery-Asberg depression rating scale, the Hamilton depression rating scale and the clinical global impressions rating scale in antidepressant clinical trials,” International Clinical Psychopharmacology, vol. 17, no. 6, pp. 281–285, 2002.
[18]  A. Kadouri, E. Corruble, and B. Falissard, “The improved Clinical Global Impression Scale (iCGI): development and validation in depression,” BMC Psychiatry, vol. 7, p. 7, 2007.
[19]  S. Leucht and R. R. Engel, “The relative sensitivity of the clinical global impressions scale and the brief psychiatric rating scale in antipsychotic drug trials,” Neuropsychopharmacology, vol. 31, no. 2, pp. 406–412, 2006.
[20]  K. A. Stigler, J. E. Mullett, C. A. Erickson, D. J. Posey, and C. J. McDougle, “Paliperidone for irritability in adolescents and young adults with autistic disorder,” Psychopharmacology, vol. 223, no. 2, pp. 237–245, 2012.
[21]  I. Jordan, D. Robertson, M. Catani, M. Craig, and D. Murphy, “Aripiprazole in the treatment of challenging behaviour in adults with autism spectrum disorder,” Psychopharmacology, vol. 223, no. 3, pp. 357–360, 2012.
[22]  E. Hollander, L. Soorya, W. Chaplin et al., “A double-blind placebo-controlled trial of fluoxetine for repetitive behaviors and global severity in adult autism spectrum disorders,” American Journal of Psychiatry, vol. 169, no. 3, pp. 292–299, 2012.
[23]  P. Natrajan, A. Kumar, H. Goyal, et al., “Scientific report on research project for development of Indian Scale for assessment of autism,” http://www.thenationaltrust.co.in/nt/index.php?option=com_content&task=view&id=30&Itemid=130, 2008.
[24]  P. Gerrard, R. Goldstein, M. Divit, et al., “Validity and reliability of the FUM instrument in the inpatient burn rehabilitation population,” Archives of Physical Medicine and Rehabilitation, 2013.
[25]  J. J. Bradstreet, S. Smith, M. Baral, and D. A. Rossignol, “Biomarker-guided interventions of clinically relevant conditions associated with autism spectrum disorders and attention deficit hyperactivity disorder,” Alternative Medicine Review, vol. 15, no. 1, pp. 15–32, 2010.
[26]  M. R. Herbert, “Contributions of the environment and environmentally vulnerable physiology to autism spectrum disorders,” Current Opinion in Neurology, vol. 23, no. 2, pp. 103–110, 2010.
[27]  L. Gatto and K. Broadie, “Genetic controls balancing excitatory and inhibitory synaptogenesis in neurodevelopmental disorder models,” Frontline Synaptic Neurosciences, vol. 7, pp. 2–4, 2010.
[28]  C. Johnson and S. Meyers, “Council on children with disabilities, identification and evaluation of children with autism spectrum disorders,” Pediatrics, vol. 120, no. 5, pp. 1183–1215, 2007.
[29]  U. Frith and C. Frith, “The social brain: allowing humans to boldly go where no other species has been,” Philosophical Transactions of the Royal Society B, vol. 365, no. 1537, pp. 165–175, 2010.
[30]  L. Brothers, B. Ring, and A. Kling, “Response of neurons in the macaque amygdala to complex social stimuli,” Behavioural Brain Research, vol. 41, no. 3, pp. 199–213, 1990.
[31]  K. A. Pelphrey, S. Shultz, C. M. Hudac, and B. C. Vander Wyk, “Research review: constraining heterogeneity: the social brain and its development in autism spectrum disorder,” Journal of Child Psychology and Psychiatry and Allied Disciplines, vol. 52, no. 6, pp. 631–644, 2011.
[32]  T. Allison, A. Puce, and G. McCarthy, “Social perception from visual cues: role of the STS region,” Trends in Cognitive Sciences, vol. 4, no. 7, pp. 267–278, 2000.
[33]  M. Zilbovicius, N. Boddaert, P. Belin et al., “Temporal lobe dysfunction in childhood autism: a PET study,” American Journal of Psychiatry, vol. 157, no. 12, pp. 1988–1993, 2000.
[34]  S. Gotts, W. Simmons, L. Milbury, G. Wallace, R. Cox, and A. Martin, “Fractionation of social brain circuits in autism spectrum disorders,” Brain, vol. 135, pp. 2711–2725, 2012.
[35]  T. Hashimoto, M. Sasaki, M. Fukumizu, S. Hanaoka, K. Sugai, and H. Matsuda, “Single-photon emission computed tomography of the brain in autism: effect of the developmental level,” Pediatric Neurology, vol. 23, no. 5, pp. 416–420, 2000.
[36]  A. M. Connolly, M. Chez, E. M. Streif et al., “Brain-derived neurotrophic factor and autoantibodies to neural antigens in sera of children with autistic spectrum disorders, Landau-Kleffner syndrome, and epilepsy,” Biological Psychiatry, vol. 59, no. 4, pp. 354–363, 2006.
[37]  A. Vojdani, T. O'Bryan, J. A. Green et al., “Immune response to dietary proteins, gliadin and cerebellar peptides in children with autism,” Nutritional Neuroscience, vol. 7, no. 3, pp. 151–161, 2004.
[38]  H. H. P. Cohly and A. Panja, “Immunological findings in autism,” International Review of Neurobiology, vol. 71, pp. 317–341, 2005.
[39]  D. L. Vargas, C. Nascimbene, C. Krishnan, A. W. Zimmerman, and C. A. Pardo, “Neuroglial activation and neuroinflammation in the brain of patients with autism,” Annals of Neurology, vol. 57, no. 1, pp. 67–81, 2005.
[40]  P. Ashwood, P. Krakowiak, I. Hertz-Picciotto, R. Hansen, I. Pessah, and J. Van de Water, “Elevated plasma cytokines in autism spectrum disorders provide evidence of immune dysfunction and are associated with impaired behavioral outcome,” Brain, Behavior, and Immunity, vol. 25, no. 1, pp. 40–45, 2011.
[41]  J. Grove, E. Bruscia, and D. S. Krause, “Plasticity of bone marrow-derived stem cells,” Stem Cells, vol. 22, no. 4, pp. 487–500, 2004.
[42]  A. Nakano-Doi, T. Nakagomi, M. Fujikawa et al., “Bone marrow mononuclear cells promote proliferation of endogenous neural stem cells through vascular niches after cerebral infarction,” Stem Cells, vol. 28, no. 7, pp. 1292–1302, 2010.
[43]  E. Sykova, P. Hendelova, L. Urdzikova, P. Lensy, and A. Hejcl, “Bone marrow stem cells and polymer hydrogels-two strategies for spinal cord injury repair,” Cell Molecular Neurobiology, vol. 26, no. 7-8, pp. 1113–1129, 2006.
[44]  D. Siniscalo, J. Bradstreet, and N. Antonucci, “The promise of regenerative medicine and stem cell research for the treatment of autism,” Journal of Regenerative Medicine, vol. 1, p. 1, 2012.
[45]  D. Siniscalco, A. Sapone, A. Cirillo, C. Giordano, S. Maione, and N. Antonucci, “Autism spectrum disorders: is mesenchymal stem cell personalized therapy the future?” Journal of Biomedicine and Biotechnology, vol. 2012, Article ID 480289, 6 pages, 2012.
[46]  B. Pelacho, M. Mazo, J. J. Gavira, and F. Prósper, “Adult stem cells: from new cell sources to changes in methodology,” Journal of Cardiovascular Translational Research, vol. 4, no. 2, pp. 154–160, 2011.
[47]  J. Meng, F. Muntoni, and J. E. Morgan, “Stem cells to treat muscular dystrophies-where are we?” Neuromuscular Disorders, vol. 21, no. 1, pp. 4–12, 2011.
[48]  L. E. Glover, N. Tajiri, N. L. Weinbren et al., “A step-up approach for cell therapy in stroke: translational hurdles of bone marrow-derived stem cells,” Translational Stroke Research, vol. 3, no. 1, pp. 90–98, 2012.
[49]  F. Callera and C. M. T. P. De Melo, “Magnetic resonance tracking of magnetically labeled autologous bone marrow CD34+ cells transplanted into the spinal cord via lumbar puncture technique in patients with chronic spinal cord injury: CD34+ cells' migration into the injured site,” Stem Cells and Development, vol. 16, no. 3, pp. 461–466, 2007.
[50]  F. Callera and R. X. Do Nascimento, “Delivery of autologous bone marrow precursor cells into the spinal cord via lumbar puncture technique in patients with spinal cord injury: a preliminary safety study,” Experimental Hematology, vol. 34, no. 2, pp. 130–131, 2006.
[51]  T. C. Theoharides, A. Angelidou, K. Alysandratos et al., “Mast cell activation and autism,” Biochimica et Biophysica Acta, vol. 1822, no. 1, pp. 34–41, 2012.
[52]  T. C. Theoharides and B. Zhang, “Neuro-inflammation, blood-brain barrier, seizures and autism,” Journal of Neuroinflammation, vol. 8, p. 168, 2011.
[53]  C. J. Newschaffer, L. A. Croen, J. Daniels et al., “The epidemiology of autism spectrum disorders,” Annual Review of Public Health, vol. 28, pp. 235–258, 2007.
[54]  E. Anagnostou and M. J. Taylor, “Review of neuroimaging in autism spectrum disorders: what have we learned and where we go from here,” Molecular Autism, vol. 2, no. 1, p. 4, 2011.
[55]  J. S. Verhoeven, P. D. Cock, L. Lagae, and S. Sunaert, “Neuroimaging of autism,” Neuroradiology, vol. 52, no. 1, pp. 3–14, 2010.
[56]  T. Schifter, J. M. Hoffman, H. P. Hatten Jr., M. W. Hanson, R. E. Coleman, and G. R. DeLong, “Neuroimaging in infantile autism,” Journal of Child Neurology, vol. 9, no. 2, pp. 155–161, 1994.
[57]  M. Zilbovicius, I. Meresse, and N. Boddaert, “Autism: neuroimaging,” Revista Brasileira de Psiquiatria, vol. 28, supplement 1, pp. S21–S28, 2006.
[58]  D. C. Chugani, “Neuroimaging and neurochemistry of autism,” Pediatric Clinics of North America, vol. 59, no. 1, pp. 63–73, 2012.
[59]  L. Galuska, S. Szakáll Jr., M. Emri et al., “PET and SPECT scans in autistic children,” Orvosi hetilap, vol. 143, no. 21, supplement 3, pp. 1302–1304, 2002.
[60]  J. Case-Smith and M. Arbesman, “Evidence-based review of interventions for autism used in or of relevance to occupational therapy,” American Journal of Occupational Therapy, vol. 62, no. 4, pp. 416–429, 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133