With regard to the bone-regenerative capacity, bone marrow stromal cells (BMSC) can still be termed the “gold standard.” Nevertheless, neonatal stromal cells from cord blood (CB) feature advantages concerning availability, immaturity, and proliferation potential. The detailed gene expression analysis and overexpression of genes expressed differentially provide insight into the inherent capacity of stromal cells. Microarray and qRT-PCR analyses revealed closely related gene expression patterns of two stromal cell populations derived from CB. In contrast to the CB-derived cell types, BMSC displayed high expression levels of BSP, OSX, BMP4, OC, and PITX2. Lentiviral overexpression of BSP but not of OSX in CB-cells increased the capacity to form a mineralized matrix. BMP4 induced the secretion of proteoglycans during chondrogenic pellet culture and extended the osteogenic but reduced the adipogenic differentiation potential. BMSC revealed the typical osteogenic gene expression signature. In contrast, the CB-derived cell types exhibited a more immature gene expression profile and no predisposition towards skeletal development. The absence of BSP and BMP4—which were defined as potential key players affecting the differentiation potential—in neonatal stromal cells should be taken into consideration when choosing a cell source for tissue regeneration approaches. 1. Introduction With respect to the regeneration of cartilage or bone after tumor resection, accidents, or due to diseases affecting the skeleton, there is, great need for tissue-engineered bone. The cellular component of these approaches has been in the focus of interest for many years. The first described [1] and therefore the best studied nonhematopoietic stromal cell type derives from bone marrow (BM). The in vivo bone forming potential—including recruitment of hematopoietic cells of recipient origin—of these bone marrow stromal cells (BMSC) after transplantation on a hydroxyapatite scaffold was reported by several groups [2, 3]. The potential risks associated with the bone marrow donation made other sources of stromal cells, for example, adipose tissue or peripheral blood, attractive alternatives. Due to its immaturity compared to adult bone marrow, neonatal cord blood (CB), which can be collected noninvasively and without ethical concerns, can be regarded as a proper source of neonatal stromal cells with potential clinical relevance in the future. Cord blood contains at least two distinct populations of nonhematopoietic stromal cells with comparable proliferative potential [4], which were termed
References
[1]
A. J. Friedenstein, R. K. Chailakhyan, and U. V. Gerasimov, “Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers,” Cell and Tissue Kinetics, vol. 20, no. 3, pp. 263–272, 1987.
[2]
S. A. Kuznetsov, P. H. Krebsbach, K. Satomura et al., “Single-colony derived strains of human marrow stromal fibroblasts form bone after transplantation in vivo,” Journal of Bone and Mineral Research, vol. 12, no. 9, pp. 1335–1347, 1997.
[3]
B. Sacchetti, A. Funari, S. Michienzi et al., “Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment,” Cell, vol. 131, no. 2, pp. 324–336, 2007.
[4]
J. Bosch, A. P. Houben, T. F. Radke, et al., “Distinct differentiation potential of, “MSC” derived from cord blood and umbilical cord: are cord-derived cells true mesenchymal stromal cells?” Stem Cells and Development, vol. 21, no. 11, pp. 1977–1988, 2012.
[5]
S. M. Kluth, A. Buchheiser, A. P. Houben et al., “DLK-1 as a marker to distinguish unrestricted somatic stem cells and mesenchymal stromal cells in cord blood,” Stem Cells and Development, vol. 19, no. 10, pp. 1471–1483, 2010.
[6]
S. M. Kluth, T. F. Radke, and G. Kogler, “Increased haematopoietic supportive function of USSC from umbilical cord blood compared to CB MSC and possible role of DLK-1,” Stem Cells International, vol. 2013, Article ID 985285, 12 pages, 2013.
[7]
S. Liedtke, A. Buchheiser, J. Bosch et al., “The HOX Code as a “biological fingerprint” to distinguish functionally distinct stem cell populations derived from cord blood,” Stem Cell Research, vol. 5, no. 1, pp. 40–50, 2010.
[8]
B. J. H. Jansen, C. Gilissen, H. Roelofs et al., “Functional differences between mesenchymal stem cell populations are reflected by their transcriptome,” Stem Cells and Development, vol. 19, no. 4, pp. 481–489, 2010.
[9]
M. B. Goldring, K. Tsuchimochi, and K. Ijiri, “The control of chondrogenesis,” Journal of Cellular Biochemistry, vol. 97, no. 1, pp. 33–44, 2006.
[10]
F. Long, “Building strong bones: molecular regulation of the osteoblast lineage,” Nature Reviews Molecular Cell Biology, vol. 13, no. 1, pp. 27–38, 2012.
[11]
A. Bandyopadhyay, K. Tsuji, K. Cox, B. D. Harfe, V. Rosen, and C. J. Tabin, “Genetic analysis of the roles of BMP2, BMP4, and BMP7 in limb patterning and skeletogenesis,” PLoS Genetics, vol. 2, no. 12, article e216, 2006.
[12]
G. Karsenty, “Transcriptional control of skeletogenesis,” Annual Review of Genomics and Human Genetics, vol. 9, pp. 183–196, 2008.
[13]
K. Nakashima, X. Zhou, G. Kunkel et al., “The novel zinc finger-containing transcription factor Osterix is required for osteoblast differentiation and bone formation,” Cell, vol. 108, no. 1, pp. 17–29, 2002.
[14]
R. H. Kim, H. S. Shapiro, J. J. Li, J. L. Wrana, and J. Sodek, “Characterization of the human bone sialoprotein (BSP) gene and its promoter sequence,” Matrix Biology, vol. 14, no. 1, pp. 31–40, 1994.
[15]
K. Satomura, P. Krebsbach, P. Bianco, and P. G. Robey, “Osteogenic imprinting-upstream of marrow stromal cell differentiation,” Journal of Cellular Biochemistry, vol. 78, no. 3, pp. 391–403, 2000.
[16]
G. K?gler, S. Sensken, J. A. Airey et al., “A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential,” Journal of Experimental Medicine, vol. 200, no. 2, pp. 123–135, 2004.
[17]
G. K?gler, T. F. Radke, A. Lefort et al., “Cytokine production and hematopoiesis supporting activity of cord blood-derived unrestricted somatic stem cells,” Experimental Hematology, vol. 33, no. 5, pp. 573–583, 2005.
[18]
B. M. Bolstad, R. A. Irizarry, M. ?strand, and T. P. Speed, “A comparison of normalization methods for high density oligonucleotide array data based on variance and bias,” Bioinformatics, vol. 19, no. 2, pp. 185–193, 2003.
[19]
G. Dennis Jr., B. T. Sherman, D. A. Hosack et al., “DAVID: database for annotation, visualization, and integrated discovery,” Genome Biology, vol. 4, no. 5, article P3, 2003.
[20]
D. W. Huang, B. T. Sherman, and R. A. Lempicki, “Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources,” Nature Protocols, vol. 4, no. 1, pp. 44–57, 2009.
[21]
B. T. Sherman, D. W. Huang, Q. Tan et al., “DAVID knowledgebase: a gene-centered database integrating heterogeneous gene annotation resources to facilitate high-throughput gene functional analysis,” BMC Bioinformatics, vol. 8, article 426, 2007.
[22]
P. G. Robey, “Cell sources for bone regeneration: the good, the bad, and the ugly (but promising),” Tissue Engineering B, vol. 17, no. 6, pp. 423–430, 2011.
[23]
D. J. Prockop, “Marrow stromal cells as stem cells for nonhematopoietic tissues,” Science, vol. 276, no. 5309, pp. 71–74, 1997.
[24]
A. Kieusseian, J. Chagraoui, C. Kerdudo et al., “Expression of Pitx2 in stromal cells is required for normal hematopoiesis,” Blood, vol. 107, no. 2, pp. 492–500, 2006.
[25]
L. Malaval, N. M. Wade-Guéye, M. Boudiffa et al., “Bone sialoprotein plays a functional role in bone formation and osteoclastogenesis,” Journal of Experimental Medicine, vol. 205, no. 5, pp. 1145–1153, 2008.
[26]
G. K. Hunter and H. A. Goldberg, “Modulation of crystal formation by bone phosphoproteins: role of glutamic acid-rich sequences in the nucleation of hydroxyapatite by bone sialoprotein,” Biochemical Journal, vol. 302, part 1, pp. 175–179, 1994.
[27]
S.-I. Harada and G. A. Rodan, “Control of osteoblast function and regulation of bone mass,” Nature, vol. 423, no. 6937, pp. 349–355, 2003.
[28]
H. Kurata, P. V. Guillot, J. Chan, and N. M. Fisk, “Osterix induces osteogenic gene expression but not differentiation in primary human fetal mesenchymal stem cells,” Tissue Engineering, vol. 13, no. 7, pp. 1513–1523, 2007.
[29]
C. A. Yoshida, H. Komori, Z. Maruyama et al., “Sp7 inhibits osteoblast differentiation at a late stage in mice,” PLoS One, vol. 7, no. 3, Article ID e32364, 2012.
[30]
L. Wu, Y. Wu, Y. Lin et al., “Osteogenic differentiation of adipose derived stem cells promoted by overexpression of osterix,” Molecular and Cellular Biochemistry, vol. 301, no. 1-2, pp. 83–92, 2007.
[31]
Q. Tu, P. Valverde, and J. Chen, “Osterix enhances proliferation and osteogenic potential of bone marrow stromal cells,” Biochemical and Biophysical Research Communications, vol. 341, no. 4, pp. 1257–1265, 2006.
[32]
T. Koga, Y. Matsui, M. Asagiri et al., “NFAT and Osterix cooperatively regulate bone formation,” Nature Medicine, vol. 11, no. 8, pp. 880–885, 2005.
[33]
P. Bakrania, M. Efthymiou, J. C. Klein et al., “Mutations in BMP4 cause eye, brain, and digit developmental anomalies: overlap between the BMP4 and hedgehog signaling pathways,” American Journal of Human Genetics, vol. 82, no. 2, pp. 304–319, 2008.
[34]
L. Kan, M. Hu, W. A. Gomes, and J. A. Kessler, “Transgenic mice overexpressing BMP4 develop a fibrodysplasia ossificans progressiva (FOP)-like phenotype,” American Journal of Pathology, vol. 165, no. 4, pp. 1107–1115, 2004.
[35]
D. Duprez, E. J. Bell, M. K. Richardson et al., “Overexpression of BMP-2 and BMP-4 alters the size and shape of developing skeletal elements in the chick limb,” Mechanisms of Development, vol. 57, no. 2, pp. 145–157, 1996.
[36]
T. Akune, S. Ohba, S. Kamekura et al., “PPARγ insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors,” Journal of Clinical Investigation, vol. 113, no. 6, pp. 846–855, 2004.
[37]
I. Takada, A. P. Kouzmenko, and S. Kato, “Molecular switching of osteoblastogenesis versus adipogenesis: implications for targeted therapies,” Expert Opinion on Therapeutic Targets, vol. 13, no. 5, pp. 593–603, 2009.
[38]
I. Satokata, L. Ma, H. Ohshima et al., “Msx2 deficiency in mice causes pleiotropic defects in bone growth and ectodermal organ formation,” Nature Genetics, vol. 24, no. 4, pp. 391–395, 2000.
[39]
F. Ichida, R. Nishimura, K. Hata et al., “Reciprocal roles of Msx2 in regulation of osteoblast and adipocyte differentiation,” Journal of Biological Chemistry, vol. 279, no. 32, pp. 34015–34022, 2004.
[40]
T. C. Lee, L. Li, L. Philipson, and E. B. Ziff, “Myc represses transcription of the growth arrest gene gas1,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 24, pp. 12886–12891, 1997.