全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Human Mesenchymal Stem Cells Display Reduced Expression of CD105 after Culture in Serum-Free Medium

DOI: 10.1155/2013/698076

Full-Text   Cite this paper   Add to My Lib

Abstract:

Human Mesenchymal Stem Cells (hMSCs) present a promising tool for regenerative medicine. However, ex vivo expansion is necessary to obtain sufficient cells for clinical therapy. Conventional growth media usually contain the critical component fetal bovine serum. For clinical use, chemically defined media will be required. In this study, the capability of two commercial, chemically defined, serum-free hMSC growth media (MSCGM-CD and PowerStem) for hMSC proliferation was examined and compared to serum-containing medium (MSCGM). Immunophenotyping of hMSCs was performed using flow cytometry, and they were tested for their ability to differentiate into a variety of cell types. Although the morphology of hMSCs cultured in the different media differed, immunophenotyping displayed similar marker patterns (high expression of CD29, CD44, CD73, and CD90 cell surface markers and absence of CD45). Interestingly, the expression of CD105 was significantly lower for hMSCs cultured in MSCGM-CD compared to MSCGM. Both groups maintained mesenchymal multilineage differentiation potential. In conclusion, the serum-free growth medium is suitable for hMSC culture and comparable to its serum-containing counterpart. As the expression of CD105 has been shown to positively influence hMSC cardiac regenerative potential, the impact of CD105 expression onto clinical use after expansion in MSCGM-CD will have to be tested. 1. Introduction Human MSCs play an essential role in today’s medical research, as they promise new approaches in treatment of human diseases. Their plasticity and immense ex vivo proliferation potential make MSC an important tool for cell transplantation as well as generation of living, functional tissue suitable for organ repair and replacement. Mesenchymal stem cells have already been successfully applied in treatment of osteogenesis imperfecta [1] to limit graft-versus-host disease via immunosuppression [2]. Furthermore, it has been reported that MSCs contribute to the regeneration process after myocardial infarction in mice [3] and are able to improve the outcome of allogeneic transplantation in general by means of immunomodulatory effects [4]. MSCs were first described as plastic adherent, clonogenic, colony-forming fibroblast-like cells [5]. So far, no generally accepted definition of MSC exists, although they are identified by specific properties [6]. The most important is the hMSC ability to self-renew and to give rise to mature cells of adipogenic, osteogenic, and chondrogenic lineage, producing tissues such as bone, cartilage, tendon, adipose tissue, and

References

[1]  E. M. Horwitz, P. L. Gordon, W. K. K. Koo et al., “Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 13, pp. 8932–8937, 2002.
[2]  B. Maitra, E. Szekely, K. Gjini et al., “Human mesenchymal stem cells support unrelated donor hematopoietic stem cells and suppress T-cell activation,” Bone Marrow Transplantation, vol. 33, no. 6, pp. 597–604, 2004.
[3]  H. Kawada, J. Fujita, K. Kinjo et al., “Nonhematopoietic mesenchymal stem cells can be mobilized and differentiate into cardiomyocytes after myocardial infarction,” Blood, vol. 104, no. 12, pp. 3581–3587, 2004.
[4]  C. Nesselmann, A. Kaminski, and G. Steinhoff, “Cardiac stem cell therapy. Registered trials and a pilot study in patients with dilated cardiomyopathy,” Herz, vol. 36, no. 2, pp. 121–134, 2011.
[5]  A. J. Friedenstein, R. K. Chailakhyan, and U. V. Gerasimov, “Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers,” Cell and Tissue Kinetics, vol. 20, no. 3, pp. 263–272, 1987.
[6]  M. Dominici, K. Le Blanc, I. Mueller et al., “Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement,” Cytotherapy, vol. 8, no. 4, pp. 315–317, 2006.
[7]  R. M. Lemoli, F. Bertolini, R. Cancedda et al., “Stem cell plasticity: time for a reappraisal?” Haematologica, vol. 90, no. 3, pp. 360–381, 2005.
[8]  J. J. Minguell, A. Erices, and P. Conget, “Mesenchymal stem cells,” Experimental Biology and Medicine, vol. 226, no. 6, pp. 507–520, 2001.
[9]  M. F. Pittenger, A. M. Mackay, S. C. Beck et al., “Multilineage potential of adult human mesenchymal stem cells,” Science, vol. 284, no. 5411, pp. 143–147, 1999.
[10]  S. E. Haynesworth, J. Goshima, V. M. Goldberg, and A. I. Caplan, “Characterization of cells with osteogenic potential from human marrow,” Bone, vol. 13, no. 1, pp. 81–88, 1992.
[11]  P. A. Conget and J. J. Minguell, “Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells,” Journal of Cellular Physiology, vol. 181, no. 1, pp. 67–73, 1999.
[12]  S. E. Duff, C. Li, J. M. Garland, and S. Kumar, “CD105 is important for angiogenesis: evidence and potential applications,” The FASEB Journal, vol. 17, no. 9, pp. 984–992, 2003.
[13]  S. A. Kuznetsov, M. H. Mankani, and P. G. Robey, “Effect of serum on human bone marrow stromal cells: ex vivo expansion and in vivo bone formation,” Transplantation, vol. 70, no. 12, pp. 1780–1787, 2000.
[14]  J. L. Spees, C. A. Gregory, H. Singh et al., “Internalized antigens must be removed to prepare hypoimmunogenic mesenchymal stem cells for cell and gene therapy,” Molecular Therapy, vol. 9, no. 5, pp. 747–756, 2004.
[15]  N. Stute, K. Holtz, M. Bubenheim, C. Lange, F. Blake, and A. R. Zander, “Autologous serum for isolation and expansion of human mesenchymal stem cells for clinical use,” Experimental Hematology, vol. 32, no. 12, pp. 1212–1225, 2004.
[16]  P. A. Sotiropoulou, S. A. Perez, M. Salagianni, C. N. Baxevanis, and M. Papamichail, “Characterization of the optimal culture conditions for clinical scale production of human mesenchymal stem cells,” Stem Cells, vol. 24, no. 2, pp. 462–471, 2006.
[17]  A. Shahdadfar, K. Fr?nsdal, T. Haug, F. P. Reinholt, and J. E. Brinchmann, “In vitro expansion of human mesenchymal stem cells: choice of serum is a determinant of cell proliferation, differentiation, gene expression, and transcriptome stability,” Stem Cells, vol. 23, no. 9, pp. 1357–1366, 2005.
[18]  I. Müller, S. Kordowich, C. Holzwarth et al., “Animal serum-free culture conditions for isolation and expansion of multipotent mesenchymal stromal cells from human BM,” Cytotherapy, vol. 8, no. 5, pp. 437–444, 2006.
[19]  H. G. Drexler and C. C. Uphoff, “Mycoplasma contamination of cell cultures: incidence, sources, effects, detection, elimination, prevention,” Cytotechnology, vol. 39, no. 2, pp. 75–90, 2002.
[20]  N. Meuleman, T. Tondreau, A. Delforge et al., “Human marrow mesenchymal stem cell culture: serum-free medium allows better expansion than classical α-MEM medium,” European Journal of Haematology, vol. 76, no. 4, pp. 309–316, 2006.
[21]  T. Sánchez-Elsner, L. M. Botella, B. Velasco, C. Langa, and C. Bernabéu, “Endoglin expression is regulated by transcriptional cooperation between the hypoxia and transforming growth factor-β pathways,” The Journal of Biological Chemistry, vol. 277, no. 46, pp. 43799–43808, 2002.
[22]  R. Gaebel, D. Furlani, H. Sorg et al., “Cell origin of human mesenchymal stem cells determines a different healing performance in cardiac regeneration,” PLoS ONE, vol. 6, no. 2, Article ID e15652, 2011.
[23]  A. Muraglia, R. Cancedda, and R. Quarto, “Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model,” Journal of Cell Science, vol. 113, no. 7, pp. 1161–1166, 2000.
[24]  B. Levi, D. C. Wan, J. P. Glotzbach et al., “CD105 protein depletion enhances human adipose-derived stromal cell osteogenesis through reduction of transforming growth factor β1 (TGF-β1) signaling,” The Journal of Biological Chemistry, vol. 286, no. 45, pp. 39497–39509, 2011.
[25]  W. Wagner, F. Wein, A. Seckinger et al., “Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood,” Experimental Hematology, vol. 33, no. 11, pp. 1402–1416, 2005.
[26]  S. Kern, H. Eichler, J. Stoeve, H. Klüter, and K. Bieback, “Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue,” Stem Cells, vol. 24, no. 5, pp. 1294–1301, 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133