全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Age-Related Yield of Adipose-Derived Stem Cells Bearing the Low-Affinity Nerve Growth Factor Receptor

DOI: 10.1155/2013/372164

Full-Text   Cite this paper   Add to My Lib

Abstract:

Adipose-derived stem cells (ADSCs) are a heterogeneous cell population that may be enriched by positive selection with antibodies against the low-affinity nerve growth factor receptor (LNGFR or CD271), yielding a selective cell universe with higher proliferation and differentiation potential. This paper addresses the need for determining the quantity of ADSCs positive for the CD271 receptor and its correlation with donor's age. Mononuclear cells were harvested from the lower backs of 35 female donors and purified using magnetic beads. Multipotency capacity was tested by the expression of stemness genes and through differentiation into preosteoblasts and adipocytes. A significant statistical difference was found in CD271+ concentrations between defined age intervals. The highest yield was found within women on the 30–40-year-old age range. CD271+ ADSCs from all age groups showed differentiation capabilities as well as expression of typical multipotent stem cell genes. Our data suggest that the amount of CD271+ cells correlates inversely with age. However, the ability to obtain these cells was maintained through all age ranges with a yield higher than what has been reported from bone marrow. Our findings propose CD271+ ADSCs as the primary choice for tissue regeneration and autologous stem cell therapies in older subjects. 1. Introduction It has been demonstrated that adipose tissue represents an abundant source of mesenchymal stem cells as well as those obtained from bone marrow. Furthermore, adipose-derived stem cells (ADSCs) have similar differentiation capability, morphology, and phenotype as mesenchymal stem cells collected from umbilical cord blood or bone marrow [1–5]. ADSCs, like bone marrow derived stem cells, adhere to plastic producing fibroblast-like colonies, have a high proliferative capacity, express common surface antigens, and can differentiate in vitro and in vivo toward cells of mesodermal lineage [6]. Also, ADSCs have the ability to be induced into cells derived from all three germ layers [6–10] and are capable of suppressing immunoreactivity [11], making them ideal for stem cell-based therapies. A typical ADSCs extraction protocol yields heterogeneous cell populations which may be homogenized through culture. However, time and culture conditions may cause changes in their phenotype due to sequential differences in antigen expression [12]. A homogeneous, fully characterized ADSCs population is desirable for use in clinical applications, an event that can be reached using antibodies [13]. Different cell surface receptors, such as the

References

[1]  D. A. De Ugarte, K. Morizono, A. Elbarbary et al., “Comparison of multi-lineage cells from human adipose tissue and bone marrow,” Cells Tissues Organs, vol. 174, no. 3, pp. 101–109, 2003.
[2]  S. Kern, H. Eichler, J. Stoeve, H. Klüter, and K. Bieback, “Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue,” Stem Cells, vol. 24, no. 5, pp. 1294–1301, 2006.
[3]  B. Puissant, C. Barreau, P. Bourin et al., “Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells,” British Journal of Haematology, vol. 129, no. 1, pp. 118–129, 2005.
[4]  H. J. Jin, Y. K. Bae, M. Kim, et al., “Comparative analysis of human mesenchymal stem cells from bone marrow, adipose tissue, and umbilical cord blood as sources of cell therapy,” International Journal of Molecular Sciences, vol. 14, no. 9, pp. 17986–18001, 2013.
[5]  Y. Zhu, T. Liu, K. Song, X. Fan, X. Ma, and Z. Cui, “Adipose-derived stem cell: a better stem cell than BMSC,” Cell Biochemistry and Function, vol. 26, no. 6, pp. 664–675, 2008.
[6]  P. A. Zuk, “The adipose-derived stem cell: looking back and looking ahead,” Molecular Biology of the Cell, vol. 21, no. 11, pp. 1783–1787, 2010.
[7]  M. Locke, J. Windsor, and P. R. Dunbar, “Human adipose-derived stem cells: isolation, characterization and applications in surgery,” ANZ Journal of Surgery, vol. 79, no. 4, pp. 235–244, 2009.
[8]  H. Mizuno, “Adipose-derived stem cells for tissue repair and regeneration: ten years of research and a literature review,” Journal of Nippon Medical School, vol. 76, no. 2, pp. 56–66, 2009.
[9]  H. Mizuno, M. Tobita, and A. C. Uysal, “Concise review: adipose-derived stem cells as a novel tool for future regenerative medicine,” Stem Cells, vol. 30, no. 5, pp. 804–810, 2012.
[10]  A. Sch?ffler and C. Büchler, “Concise review: adipose tissue-derived stromal cells—basic and clinical implications for novel cell-based therapies,” Stem Cells, vol. 25, no. 4, pp. 818–827, 2007.
[11]  B. Puissant, C. Barreau, P. Bourin et al., “Immunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells,” British Journal of Haematology, vol. 129, no. 1, pp. 118–129, 2005.
[12]  P. C. Baer, “Adipose-derived stem cells and their potential to differentiate into the epithelial lineage,” Stem Cells and Development, vol. 20, no. 10, pp. 1805–1816, 2011.
[13]  N. Quirici, D. Soligo, P. Bossolasco, F. Servida, C. Lumini, and G. L. Deliliers, “Isolation of bone marrow mesenchymal stem cells by anti-nerve growth factor receptor antibodies,” Experimental Hematology, vol. 30, no. 7, pp. 783–791, 2002.
[14]  E. A. Jones, A. English, S. E. Kinsey et al., “Optimization of a flow cytometry-based protocol for detection and phenotypic characterization of multipotent mesenchymal stromal cells from human bone marrow,” Cytometry B, vol. 70, no. 6, pp. 391–399, 2006.
[15]  N. Quirici, C. Scavullo, L. De Girolamo et al., “Anti-L-NGFR and -CD34 monoclonal antibodies identify multipotent mesenchymal stem cells in human adipose tissue,” Stem Cells and Development, vol. 19, no. 6, pp. 915–925, 2010.
[16]  E. Jones and D. McGonagle, “Human bone marrow mesenchymal stem cells in vivo,” Rheumatology, vol. 47, no. 2, pp. 126–131, 2008.
[17]  Z. Ku?i, S. Ku?i, S. Zircher et al., “Mesenchymal stromal cells derived from CD271+ bone marrow mononuclear cells exert potent allosuppressive properties,” Cytotherapy, vol. 13, no. 10, pp. 1193–1204, 2011.
[18]  N. Yamamoto, H. Akamatsu, S. Hasegawa et al., “Isolation of multipotent stem cells from mouse adipose tissue,” Journal of Dermatological Science, vol. 48, no. 1, pp. 43–52, 2007.
[19]  P. A. Zuk, M. Zhu, H. Mizuno et al., “Multilineage cells from human adipose tissue: implications for cell-based therapies,” Tissue Engineering, vol. 7, no. 2, pp. 211–228, 2001.
[20]  M. P. Francis, P. C. Sachs, L. W. Elmore, and S. E. Holt, “Isolating adipose-derived mesenchymal stem cells from lipoaspirate blood and saline fraction,” Organogenesis, vol. 6, no. 1, pp. 11–14, 2010.
[21]  The R Project for Statistical Computing, http://www.r-project.org/.
[22]  B. M. Strem, K. C. Hicok, M. Zhu et al., “Multipotential differentiation of adipose tissue-derived stem cells,” Keio Journal of Medicine, vol. 54, no. 3, pp. 132–141, 2005.
[23]  A. V. Padoin, J. Braga-Silva, P. Martins et al., “Sources of processed lipoaspirate cells: influence of donor site on cell concentration,” Plastic and Reconstructive Surgery, vol. 122, no. 2, pp. 614–618, 2008.
[24]  M. Dominici, K. Le Blanc, I. Mueller et al., “Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement,” Cytotherapy, vol. 8, no. 4, pp. 315–317, 2006.
[25]  I. Chambers, D. Colby, M. Robertson et al., “Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells,” Cell, vol. 113, no. 5, pp. 643–655, 2003.
[26]  A. Gagliardi, N. P. Mullin, Z. Ying Tan, et al., “A direct physical interaction between Nanog and Sox2 regulates embryonic stem cell self-renewal,” The EMBO Journal, vol. 32, no. 16, pp. 2231–2247, 2013.
[27]  S. Masui, Y. Nakatake, Y. Toyooka et al., “Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells,” Nature Cell Biology, vol. 9, no. 6, pp. 625–635, 2007.
[28]  V. Karwacki-Neisius, J. Goke, R. Osorno, et al., “Reduced Oct4 expression directs a robust pluripotent state with distinct signaling activity and increased enhancer occupancy by Oct4 and Nanog,” Cell Stem Cell, vol. 12, no. 5, pp. 531–545, 2013.
[29]  S. J. Bray, “Notch signalling: a simple pathway becomes complex,” Nature Reviews Molecular Cell Biology, vol. 7, no. 9, pp. 678–689, 2006.
[30]  M. Y. Son, H. Choi, Y. M. Han, et al., “Unveiling the critical role of REX1 in the regulation of human stem cell pluripotency,” Stem Cells, 2013.
[31]  J. Liu, C. Sato, M. Cerletti, and A. Wagers, “Notch signaling in the regulation of stem cell self-renewal and differentiation,” Current Topics in Developmental Biology, vol. 92, pp. 367–409, 2010.
[32]  K. Michalczyk and M. Ziman, “Nestin structure and predicted function in cellular cytoskeletal organisation,” Histology and Histopathology, vol. 20, no. 2, pp. 665–671, 2005.
[33]  T. Yamada, H. Akamatsu, S. Hasegawa et al., “Age-related changes of p75 Neurotrophin receptor-positive adipose-derived stem cells,” Journal of Dermatological Science, vol. 58, no. 1, pp. 36–42, 2010.
[34]  A. Stolzing, E. Jones, D. McGonagle, and A. Scutt, “Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies,” Mechanisms of Ageing and Development, vol. 129, no. 3, pp. 163–173, 2008.
[35]  G. Cox, S. A. Boxall, P. V. Giannoudis et al., “High abundance of CD271+ multipotential stromal cells (MSCs) in intramedullary cavities of long bones,” Bone, vol. 50, no. 2, pp. 510–517, 2012.
[36]  M. Alvarez-Viejo, Y. Menendez-Menendez, M. A. Blanco-Gelaz, et al., “Quantifying mesenchymal stem cells in the mononuclear cell fraction of bone marrow samples obtained for cell therapy,” Transplantation Proceedings, vol. 45, no. 1, pp. 434–439, 2013.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133