全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Coculture with Late, but Not Early, Human Endothelial Progenitor Cells Up Regulates IL-1β Expression in THP-1 Monocytic Cells in a Paracrine Manner

DOI: 10.1155/2013/859643

Full-Text   Cite this paper   Add to My Lib

Abstract:

Endothelial progenitor cells (EPCs) have been used in clinical trials to treat ischemic heart disease. Monocyte infiltration plays an important role in inflammation, angiogenesis, and tissue repair during tissue ischemia. It is important to understand the interactions between EPCs and monocytes. In this study, a human EPC/THP-1 monocytic cell coculture system was used to examine EPC effect on IL-1α, IL-1β, and TNF-α expression in THP-1 cells. Late, but not early, EPCs upregulated IL-1β expression at both mRNA and protein levels. In contrast, neither early nor late EPCs affected IL-1α or TNF-α expression. Coculture with human umbilical vein endothelial cells did not alter IL-1β expression. It has been shown that activation of integrin β2 in human neutrophils augments IL-1β synthesis; however integrin β2 was not involved in IL-1β expression in THP-1 cells. Addition of late EPC conditioned medium to THP-1 cell culture led to a modest increase of IL-1β mRNA levels, indicating that late EPCs upregulate IL-1β expression partly through a paracrine pathway. IL-1β, an important inflammation mediator, has been shown to promote EPC function. Our data therefore suggest that late EPCs can exert self-enhancement effects by interacting with monocytes and that EPCs might modulate inflammatory reactions by regulating IL-1β expression in monocytes. 1. Introduction Endothelial progenitor cells (EPCs), first described by Asahara et al. [1], represent a heterogeneous cell population derived from circulating CD34 positive or CD34 and KDR/VEGF receptor-2 (KDR/VEGFR2) double positive mononuclear cells. They have the ability to differentiate into endothelial lineage cells and have been shown to incorporate into newly formed vessels in animal models of ischemia. It has also been shown that CD133 positive cells demonstrated endothelial progenitor capacity [2, 3]. Extensive in vitro and in vivo studies have established that EPCs play an important role in vascular repair and regeneration [4–6], and several clinical trials have been completed that have assessed the efficacy of EPC therapy in patients suffering ischemic heart disease [7–10]. Currently, the most common protocol to obtain EPCs is through culture of peripheral blood derived mononuclear cells (PBMNCs) in endothelial cell (EC)-specific media [11]. This method has led to the identification of 2 distinct populations of EPCs, that is, early and late EPCs [12]. Early EPCs demonstrate a typical spindle-like morphology and are generated after culture of PBMNC for 4–7 days. They possess little proliferative ability but robustly

References

[1]  T. Asahara, T. Murohara, A. Sullivan et al., “Isolation of putative progenitor endothelial cells for angiogenesis,” Science, vol. 275, no. 5302, pp. 964–967, 1997.
[2]  M. Peichev, A. J. Naiyer, D. Pereira et al., “Expression of VEGFR-2 and AC133 by circulating human CD34+ cells identifies a population of functional endothelial precursors,” Blood, vol. 95, no. 3, pp. 952–958, 2000.
[3]  U. M. Gehling, S. Ergün, U. Schumacher et al., “In vitro differentiation of endothelial cells from AC133-positive progenitor cells,” Blood, vol. 95, no. 10, pp. 3106–3112, 2000.
[4]  Q. Shi, S. Rafii, M. H. Wu et al., “Evidence for circulating bone marrow-derived endothelial cells,” Blood, vol. 92, no. 2, pp. 362–367, 1998.
[5]  T. Takahashi, C. Kalka, H. Masuda et al., “Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization,” Nature Medicine, vol. 5, no. 4, pp. 434–438, 1999.
[6]  C. Urbich and S. Dimmeler, “Endothelial progenitor cells: characterization and role in vascular biology,” Circulation Research, vol. 95, no. 4, pp. 343–353, 2004.
[7]  S. Janssens, C. Dubois, J. Bogaert et al., “Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial,” The Lancet, vol. 367, no. 9505, pp. 113–121, 2006.
[8]  B. Assmus, J. Honold, V. Sch?chinger et al., “Transcoronary transplantation of progenitor cells after myocardial infarction,” The New England Journal of Medicine, vol. 355, no. 12, pp. 1222–1232, 2006.
[9]  V. Sch?chinger, S. Erbs, A. Els?sser, et al., “Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction,” The New England Journal of Medicine, vol. 355, pp. 1210–1221, 2006.
[10]  L. Herbots, J. D'hooge, E. Eroglu et al., “Improved regional function after autologous bone marrow-derived stem cell transfer in patients with acute myocardial infarction: a randomized, double-blind strain rate imaging study,” European Heart Journal, vol. 30, no. 6, pp. 662–670, 2009.
[11]  M. R. Ward, K. A. Thompson, K. Isaac et al., “Nitric oxide synthase gene transfer restores activity of circulating angiogenic cells from patients with coronary artery disease,” Molecular Therapy, vol. 19, no. 7, pp. 1323–1330, 2011.
[12]  J. Hur, C. H. Yoon, H. S. Kim, et al., “Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 24, pp. 288–293, 2004.
[13]  D. P. Sieveking, A. Buckle, D. S. Celermajer, and M. K. C. Ng, “Strikingly different angiogenic properties of endothelial progenitor cell subpopulations: insights from a novel human angiogenesis assay,” Journal of the American College of Cardiology, vol. 51, no. 6, pp. 660–668, 2008.
[14]  E. de Falco, D. Porcelli, A. R. Torella et al., “SDF-1 involvement in endothelial phenotype and ischemia-induced recruitment of bone marrow progenitor cells,” Blood, vol. 104, no. 12, pp. 3472–3482, 2004.
[15]  E. Chavakis, A. Aicher, C. Heeschen et al., “Role of β2-integrins for homing and neovascularization capacity of endothelial progenitor cells,” Journal of Experimental Medicine, vol. 201, no. 1, pp. 63–72, 2005.
[16]  E. Sbaa, J. Dewever, P. Martinive et al., “Caveolin plays a central role in endothelial progenitor cell mobilization and homing in SDF-1-driven postischemic vasculogenesis,” Circulation Research, vol. 98, no. 9, pp. 1219–1227, 2006.
[17]  M. Hristov, W. Erl, and P. C. Weber, “Endothelial progenitor cells: mobilization, differentiation, and homing,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 23, no. 7, pp. 1185–1189, 2003.
[18]  F. I. Bellisarii, S. Gallina, and R. de Caterina, “Tumor necrosis factor-α and cardiovascular diseases,” Italian Heart Journal, vol. 2, no. 6, pp. 408–417, 2001.
[19]  H. K. Saini, Y.-J. Xu, M. Zhang, P. P. Liu, L. A. Kirshenbaum, and N. S. Dhalla, “Role of tumour necrosis factor-alpha and other cytokines in ischemia-reperfusion-induced injury in the heart,” Experimental and Clinical Cardiology, vol. 10, no. 4, pp. 213–222, 2005.
[20]  Q. Zhang, I. Kandic, and M. J. Kutryk, “Dysregulation of angiogenesis-related microRNAs in endothelial progenitor cells from patients with coronary artery disease,” Biochemical and Biophysical Research Communications, vol. 405, no. 1, pp. 42–46, 2011.
[21]  S. Dimmeler, A. Aicher, M. Vasa et al., “HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway,” The Journal of Clinical Investigation, vol. 108, no. 3, pp. 391–397, 2001.
[22]  B. Walzog, P. Weinmann, F. Jeblonski, K. Scharffetter-Kochanek, K. Bommert, and P. Gaehtgens, “A role for β2 integrins (CD11/CD18) in the regulation of cytokine gene expression of polymorphonuclear neutrophils during the inflammatory response,” The FASEB Journal, vol. 13, no. 13, pp. 1855–1865, 1999.
[23]  A. Yamada, A. Hara, M. Inoue, S. Kamizono, T. Higuchi, and K. Itoh, “β2-integrin-mediated signal up-regulates counterreceptor ICAM-1 expression on human monocytic cell line THP-1 through tyrosine phosphorylation,” Cellular Immunology, vol. 178, no. 1, pp. 9–16, 1997.
[24]  D. Al-Numani, M. Segura, M. Doré, and M. Gottschalk, “Up-regulation of ICAM-1, CD11a/CD18 and CD11c/CD18 on human THP-1 monocytes stimulated by Streptococcus suis serotype 2,” Clinical and Experimental Immunology, vol. 133, no. 1, pp. 67–77, 2003.
[25]  C. A. Dinarello, “Biologic basis for interleukin-1 in disease,” Blood, vol. 87, no. 6, pp. 2095–2147, 1996.
[26]  E. Voronov, D. S. Shouval, Y. Krelin et al., “IL-1 is required for tumor invasiveness and angiogenesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 5, pp. 2645–2650, 2003.
[27]  A. Rosell, K. Arai, J. Lok et al., “Interleukin-1β augments angiogenic responses of murine endothelial progenitor cells in vitro,” Journal of Cerebral Blood Flow and Metabolism, vol. 29, no. 5, pp. 933–943, 2009.
[28]  L. Yang, X.-G. Guo, C.-Q. Du et al., “Interleukin-1 beta increases activity of human endothelial progenitor cells: involvement of PI3K-Akt signaling pathway,” Inflammation, vol. 35, no. 4, pp. 1242–1250, 2012.
[29]  K. Amano, M. Okigaki, Y. Adachi et al., “Mechanism for IL-1β-mediated neovascularization unmasked by IL-1β knock-out mice,” Journal of Molecular and Cellular Cardiology, vol. 36, no. 4, pp. 469–480, 2004.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133