Purpose. To investigate sleep quality of hospital staff nurses, both by subjective questionnaire and objective measures. Methods. Female staff nurses at a regional teaching hospital in Northern Taiwan were recruited. The Chinese version of the pittsburgh sleep quality index (C-PSQI) was used to assess subjective sleep quality, and an electrocardiogram-based cardiopulmonary coupling (CPC) technique was used to analyze objective sleep stability. Work stress was assessed using questionnaire on medical worker’s stress. Results. A total of 156 staff nurses completed the study. Among the staff nurses, 75.8% (117) had a PSQI score of ≥5 and 39.8% had an inadequate stable sleep ratio on subjective measures. Nurses with a high school or lower educational degree had a much higher risk of sleep disturbance when compared to nurses with a college or higher level degree. Conclusions. Both subjective and objective measures demonstrated that poor sleep quality is a common health problem among hospital staff nurses. More studies are warranted on this important issue to discover possible factors and therefore to develop a systemic strategy to cope with the problem. 1. Introduction Poor sleep quality among hospital stuff nurses is a critical issue for healthcare system. It not only leads to health problems of the nurses, but it is also associated with a lower work performance and a higher risk of medical errors which may jeopardize patient’s safety [1]. The incidence of sleep disturbance among general Asian population ranged from 26.4% to 39.4% [2, 3]. Most previous studies on sleep quality of nurses focused on the effect of shift work on subjective sleep perception using self-report questionnaire and revealed that up to 57% of shift-working nurses had sleep disturbance [4]. It is therefore warranted to find out possible factors associated with sleep disturbance of working nurses. The perception of sleep quality is complex and associated with various subjective factors such as fatigue, work stress, or other emotional factors in addition to objective sleep quality. However, limited study of objective sleep quality of hospital nurses provides little information for better understanding of sleep disturbance among this population. The current methods used to assess objective sleep physiology primarily rely on polysomnography (PSG) which is based on the analysis of signals of electroencephalography (EEG), electrooculography, electromyography, and electrocardiography (ECG). Although PSG is the gold standard for objective sleep quality assessment, the cost and technical
References
[1]
D. M. Gaba and S. K. Howard, “Fatigue among clinicians and the safety of patients,” The New England Journal of Medicine, vol. 347, no. 16, pp. 1249–1255, 2002.
[2]
Y. Doi, M. Minowa, M. Uchiyama, and M. Okawa, “Subjective sleep quality and sleep problems in the general Japanese adult population,” Psychiatry and Clinical Neurosciences, vol. 55, no. 3, pp. 213–215, 2001.
[3]
W. S. Wong and R. Fielding, “Prevalence of insomnia among Chinese adults in Hong Kong: a population-based study,” Journal of Sleep Research, vol. 20, no. 1, part 1, pp. 117–126, 2011.
[4]
M. F. Shao, Y. C. Chou, M. Y. Yeh, and W. C. Tzeng, “Sleep quality and quality of life in female shift-working nurses,” Journal of Advanced Nursing, vol. 66, no. 7, pp. 1565–1572, 2010.
[5]
J. Mendels and D. R. Hawkins, “Sleep laboratory adaptation in normal subjects and depressed patients (“first night effect”),” Electroencephalography and Clinical Neurophysiology, vol. 22, no. 6, pp. 556–558, 1967.
[6]
D. A. Conroy, J. Todd Arnedt, K. J. Brower et al., “Perception of sleep in recovering alcohol-dependent patients with insomnia: relationship with future drinking,” Alcoholism, vol. 30, no. 12, pp. 1992–1999, 2006.
[7]
B. Feige, A. Al-Shajlawi, C. Nissen et al., “Does REM sleep contribute to subjective wake time in primary insomnia? A comparison of polysomnographic and subjective sleep in 100 patients,” Journal of Sleep Research, vol. 17, no. 2, pp. 180–190, 2008.
[8]
C. A. Kushida, A. Chang, C. Gadkary, C. Guilleminault, O. Carrillo, and W. C. Dement, “Comparison of actigraphic, polysomnographic, and subjective assessment of sleep parameters in sleep-disordered patients,” Sleep Medicine, vol. 2, no. 5, pp. 389–396, 2001.
[9]
R. J. Thomas, J. E. Mietus, C. K. Peng, and A. L. Goldberger, “An electrocardiogram-based technique to assess cardiopulmonary coupling during sleep,” Sleep, vol. 28, no. 9, pp. 1151–1161, 2005.
[10]
L. C. See, H. J. Chang, M. J. Liu, and H. K. Cheng, “Development and evaluation of validity and reliability of a questionnaire on medical workers' stress,” Taiwan Journal of Public Health, vol. 26, no. 6, pp. 452–461, 2007.
[11]
P. S. Tsai, S. Y. Wang, M. Y. Wang et al., “Psychometric evaluation of the Chinese version of the Pittsburgh Sleep Quality Index (CPSQI) in primary insomnia and control subjects,” Quality of Life Research, vol. 14, no. 8, pp. 1943–1952, 2005.
[12]
D. J. Buysse, C. F. Reynolds, T. H. Monk, S. R. Berman, and D. J. Kupfer, “The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research,” Psychiatry Research, vol. 28, no. 2, pp. 193–213, 1989.
[13]
T. Rutledge, E. Stucky, A. Dollarhide, et al., “A real-time assessment of work stress in physicians and nurses,” Journal of Health Psychology, vol. 28, no. 2, pp. 194–200, 2009.
[14]
H. Sveinsdóttir, “Self-assessed quality of sleep, occupational health, working environment, illness experience and job satisfaction of female nurses working different combination of shifts,” Scandinavian Journal of Caring Sciences, vol. 20, no. 2, pp. 229–237, 2006.
[15]
H. Lu, A. E. While, and K. Louise Barriball, “A model of job satisfaction of nurses: a reflection of nurses' working lives in Mainland China,” Journal of Advanced Nursing, vol. 58, no. 5, pp. 468–479, 2007.
[16]
M. K. Alimoglu and L. Donmez, “Daylight exposure and the other predictors of burnout among nurses in a University Hospital,” International Journal of Nursing Studies, vol. 42, no. 5, pp. 549–555, 2005.
[17]
E. J. Kezirian, S. L. Harrison, S. Ancoli-Israel et al., “Behavioral correlates of sleep-disordered breathing in older men,” Sleep, vol. 32, no. 2, pp. 253–261, 2009.
[18]
P. M. Macey, M. A. Woo, R. Kumar, R. L. Cross, and R. M. Harper, “Relationship between obstructive sleep apnea severity and sleep, depression and anxiety symptoms in newly-diagnosed patients,” PLoS ONE, vol. 5, no. 4, Article ID e10211, 2010.
[19]
S. Naismith, V. Winter, H. Gotsopoulos, I. Hickie, and P. Cistulli, “Neurobehavioral functioning in obstructive sleep apnea: differential effects of sleep quality, hypoxemia and subjective sleepiness,” Journal of Clinical and Experimental Neuropsychology, vol. 26, no. 1, pp. 43–54, 2004.