Improved data transmission technologies have facilitated data collected from positive airway pressure (PAP) devices in the home environment. Although clinicians’ treatment decisions increasingly rely on autoscoring of respiratory events by the PAP device, few studies have specifically examined the accuracy of autoscored respiratory events in the home environment in ongoing PAP use. “PAP efficacy” studies were conducted in which participants wore PAP simultaneously with an Embletta sleep system (Embla, Inc., Broomfield, CO), which was directly connected to the ResMed AutoSet S8 (ResMed, Inc., San Diego, CA) via a specialized cable. Mean PAP-scored Apnea-Hypopnea Index (AHI) was 14.2 ± 11.8 (median: 11.7; range: 3.9–46.3) and mean manual-scored AHI was 9.4 ± 10.2 (median: 7.7; range: 1.2–39.3). Ratios between the mean indices were calculated. PAP-scored HI was 2.0 times higher than the manual-scored HI. PAP-scored AHI was 1.5 times higher than the manual-scored AHI, and PAP-scored AI was 1.04 of manual-scored AI. In this sample, PAP-scored HI was on average double the manual-scored HI. Given the importance of PAP efficacy data in tracking treatment progress, it is important to recognize the possible bias of PAP algorithms in overreporting hypopneas. The most likely cause of this discrepancy is the use of desaturations in manual hypopnea scoring. 1. Introduction Obstructive sleep apnea (OSA) is a chronic medical condition requiring nightly application of therapy to effectively limit the number of apneas and hypopneas that would occur without intervention. The gold-standard treatment for OSA is continuous positive airway pressure therapy (PAP), which provides a pneumatic splint of the soft tissue in the upper airway [1]. PAP devices can measure and record airflow and pressure levels whenever the device is worn. They contain internal, proprietary (i.e., differing by manufacturer) algorithms that identify breathing disturbances and whether these disturbances are due to persistent obstructive or nonobstructive events. Thus, PAP devices can provide a measure of “residual” Apnea-Hypopnea Index (AHI) and its components, the Hypopnea Index (HI) and Apnea Index (AI). Although not equivalent to the indices measured by polysomnography or home sleep testing via Type III devices, the PAP terminology is nonetheless the same. American Academy of Sleep Medicine practice parameters and clinical guidelines recommend routine monitoring of adherence and efficacy data provided by PAP devices as an indication of treatment progress [2, 3]. Because residual AHI is primarily used
References
[1]
C. E. Sullivan, F. G. Issa, M. Berthon-Jones, and L. Eves, “Reversal of obstructive sleep apnoea by continuous positive airway pressure applied through the nares,” Lancet, vol. 1, no. 8225, pp. 862–865, 1981.
[2]
T. I. Morgenthaler, R. N. Aurora, T. Brown et al., “Practice parameters for the use of autotitrating continuous positive airway pressure devices for titrating pressures and treating adult patients with obstructive sleep apnea syndrome: an update for 2007. An American Academy of Sleep Medicine Report,” Sleep, vol. 31, no. 1, pp. 141–147, 2008.
[3]
L. J. Epstein, D. Kristo, P. J. Strollo Jr. et al., “Clinical guideline for the evaluation, management and long-term care of obstructive sleep apnea in adults,” Journal of Clinical Sleep Medicine, vol. 5, no. 3, pp. 263–276, 2009.
[4]
A. L. Denotti, K. K. Wong, G. C. Dungan II, J. W. Gilholme, N. S. Marshall, and R. R. Grunstein, “Residual sleep-disordered breathing during autotitrating continuous positive airway pressure therapy,” European Respiratory Journal, vol. 39, pp. 1391–1397, 2012.
[5]
R. B. Berry, C. A. Kushida, M. H. Kryger, H. Soto-Calderon, B. Staley, and S. T. Kuna, “Respiratory event detection by a positive airway pressure device,” Sleep, vol. 35, no. 3, pp. 361–367, 2012.
[6]
E. J. Topol, “Transforming medicine via digital innovation,” Science Translational Medicine, vol. 2, no. 16, article 16cm4, 2010.
[7]
C. Stepnowsky, C. Edwards, T. Zamora, R. Barker, and Z. Agha, “Patient perspective on use of an interactive website for sleep apnea,” International Journal of Telemedicine and Applications, vol. 2013, Article ID 239382, 10 pages, 2013.
[8]
C. Iber, S. Ancoli-Israel, A. Chesson, and S. F. Quan, The AASM Manual for the Scoring of Sleep and Associated Events: Rules, Terminology, and Technical Specification, American Academy of Sleep Medicine, Westchester, Ill, USA, 2007.
[9]
L. I-Kuei Lin, “A concordance correlation coefficient to evaluate reproducibility,” Biometrics, vol. 45, no. 1, pp. 255–268, 1989.
[10]
L. I. K. Lin, “A note on the concordance correlation coefficient,” Biometrics, vol. 56, pp. 324–325, 2000.
[11]
G. B. McBride, “A proposal for strength-of-agreement criteria for Lin's Concordance Correlation Coefficient,” NIWA Client Report, National Institute of Water & Atmospheric Research, Ltd, Hamilton, New Zealand, 2005.
[12]
J. M. Bland and D. G. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” Lancet, vol. 1, no. 8476, pp. 307–310, 1986.
[13]
R Development Core Team, R: A Language and Environment For Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2009.
[14]
S. T. Kuna, I. Gurubhagavatula, G. Maislin et al., “Noninferiority of functional outcome in ambulatory management of obstructive sleep apnea,” American Journal of Respiratory and Critical Care Medicine, vol. 183, no. 9, pp. 1238–1244, 2011.
[15]
N. A. Collop, W. M. Anderson, B. Boehlecke et al., “Clinical guidelines for the use of unattended portable monitors in the diagnosis of obstructive sleep apnea in adult patients,” Journal of Clinical Sleep Medicine, vol. 3, no. 7, pp. 737–747, 2007.
[16]
K. Ueno, T. Kasai, G. Brewer et al., “Evaluation of the apnea-hypopnea index determined by the S8 auto-CPAP, a continuous positive airway pressure device, in patients with obstructive sleep apnea-hypopnea syndrome,” Journal of Clinical Sleep Medicine, vol. 6, no. 2, pp. 146–151, 2010.
[17]
A. Cilli, R. Uzun, and U. Bilge, “The accuracy of autotitrating CPAP-determined residual apnea-hypopnea index,” Sleep and Breathing, pp. 1–5, 2012.
[18]
M. A. Baltzan, I. Kassissia, O. Elkholi, M. Palayew, R. Dabrusin, and N. Wolkove, “Prevalence of persistent sleep apnea in patients treated with continuous positive airway pressure,” Sleep, vol. 29, no. 4, pp. 557–563, 2006.
[19]
L. Torre-Bouscoulet, M. S. Meza-Vargas, A. Castorena-Maldonado, M. Reyes-Zú?iga, and R. Pérez-Padilla, “Autoadjusting positive pressure trial in adults with sleep apnea assessed by a simplified diagnostic approach,” Journal of Clinical Sleep Medicine, vol. 4, no. 4, pp. 341–347, 2008.
[20]
C. A. Kushida, M. R. Littner, T. Morgenthaler et al., “Practice parameters for the indications for polysomnography and related procedures: an update for 2005,” Sleep, vol. 28, no. 4, pp. 499–521, 2005.