全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Narcolepsy as an Immune-Mediated Disease

DOI: 10.1155/2014/792687

Full-Text   Cite this paper   Add to My Lib

Abstract:

Narcolepsy is a neurological disorder characterized by excessive daytime sleepiness, cataplexy, hypnagonic hallucinations, sleep paralysis, and disturbed nocturnal sleep patterns. This disease is secondary to the specific loss of hypothalamic hypocretin (orexin)-producing neurons in the lateral hypothalamus. An autoimmune basis for the disease has long been suspected based on its strong association with the genetic marker DQB1*06:02, and current studies greatly support this hypothesis. Narcolepsy with hypocretin deficiency is associated with human leukocyte antigen (HLA) and T cell receptor (TCR) polymorphisms, suggesting that an autoimmune process targets a peptide unique to hypocretin-producing neurons via specific HLA-peptide-TCR interactions. This concept has gained a lot of notoriety after the increase of childhood narcolepsy in 2010 following the 2009 H1N1 pandemic (pH1N1) in China and vaccination with Pandemrix, an adjuvanted H1N1 vaccine that was used in Scandinavia. The surge of narcolepsy cases subsequent to influenza A H1N1 infection and H1N1 vaccination suggests that processes such as molecular mimicry or bystander activation might be crucial for disease development. 1. Introduction Narcolepsy with hypocretin deficiency is a common sleep disorder that affects approximately 0.02% of the population worldwide and causes disability in 24% of the affected subjects. It is clinically characterized by excessive daytime sleepiness and abnormal sleep-wake patterns. These patients also suffer from cataplexy, a sudden loss of muscle tone triggered by strong emotions such as laughter, and are considered to be fragments of Rapid Eye Movement (REM) sleep that intrude into wakefulness, such as hypnagogic (dream-like) hallucinations as they drift off to sleep, as well as cataplexy (sudden loss of muscle tone triggered by strong emotions). All narcoleptic subjects present chronic sleepiness, but the intensity varies across the day and between individuals. This sleepiness is most troublesome during periods of inactivity, though it is often improved temporarily by a brief nap. As a consequence of sleepiness, patients may report inattention, poor memory, blurry vision, diplopia, and automatic behaviors such as driving without awareness [1–3]. 2. The Hypocretin System The disorder is caused by the specific loss of hypothalamic neurons producing two hypocretin peptides with high homology with each other, namely, hypocretin-1 and hypocretin-2 (also called orexin A and B), which are comprised of 33 and 28 amino acids, respectively [4–6]. These are produced by

References

[1]  K. Sonka and M. Susta, “Diagnosis and management of central hypersomnias,” Therapeutic Advances in Neurological Disorders, vol. 5, no. 5, pp. 297–305, 2012.
[2]  C. R. Burgess and T. E. Scammell, “Narcolepsy: neural mechanisms of sleepiness and cataplexy,” The Journal of Neuroscience, vol. 32, no. 36, pp. 12305–12311, 2012.
[3]  E. J. Mignot, “A practical guide to the therapy of narcolepsy and hypersomnia syndromes,” Neurotherapeutics, vol. 9, no. 4, pp. 739–752, 2012.
[4]  A. K. De la Herrán-Arita, M. Guerra-Crespo, and R. Drucker-Colín, “Narcolepsy and orexins: an example of progress in sleep research,” Frontiers in Neurology, vol. 2, article 26, 2011.
[5]  T. Sakurai, A. Amemiya, M. Ishii et al., “Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior,” Cell, vol. 92, no. 5, pp. 573–585, 1998.
[6]  L. de Lecea, T. S. Kilduff, C. Peyron et al., “The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 1, pp. 322–327, 1998.
[7]  P. Bonnavion and L. de Lecea, “Hypocretins in the control of sleep and wakefulness,” Current Neurology and Neuroscience Reports, vol. 10, no. 3, pp. 174–179, 2010.
[8]  L. Lin, J. Faraco, R. Li et al., “The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene,” Cell, vol. 98, no. 3, pp. 365–376, 1999.
[9]  R. M. Chemelli, J. T. Willie, C. M. Sinton et al., “Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation,” Cell, vol. 98, no. 4, pp. 437–451, 1999.
[10]  A. K. De La Herrán-Arita, V. C. Zomosa-Signoret, D. A. Millán-Aldaco et al., “Aspects of the narcolepsy-cataplexy syndrome in O/E3-null mutant mice,” Neuroscience, vol. 183, pp. 134–143, 2011.
[11]  S. Nishino, B. Ripley, S. Overeem, G. J. Lammers, and E. Mignot, “Hypocretin (orexin) deficiency in human narcolepsy,” The Lancet, vol. 355, no. 9197, pp. 39–40, 2000.
[12]  E. Mignot, G. J. Lammers, B. Ripley et al., “The role of cerebrospinal fluid hypocretin measurement in the diagnosis of narcolepsy and other hypersomnias,” Archives of Neurology, vol. 59, no. 10, pp. 1553–1562, 2002.
[13]  C. Peyron, J. Faraco, W. Rogers et al., “A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains,” Nature Medicine, vol. 6, no. 9, pp. 991–997, 2000.
[14]  T. C. Thannickal, R. Y. Moore, R. Nienhuis et al., “Reduced number of hypocretin neurons in human narcolepsy,” Neuron, vol. 27, no. 3, pp. 469–474, 2000.
[15]  E. Mignot, R. Hayduk, J. Black, F. C. Grumet, and C. Guilleminault, “HLA DQB1*0602 is associated with cataplexy in 509 narcoleptic patients,” Sleep, vol. 20, no. 11, pp. 1012–1020, 1997.
[16]  J. Hallmayer, J. Faraco, L. Lin, et al., “Narcolepsy is strongly associated with the T-cell receptor alpha locus,” Nature Genetics, vol. 41, no. 6, pp. 708–711, 2009.
[17]  A. Aran, L. Lin, S. Nevsimalova et al., “Elevated anti-streptococcal antibodies in patients with recent narcolepsy onset,” Sleep, vol. 32, no. 8, pp. 979–983, 2009.
[18]  L. Wijnans, C. Lecomte, C. de Vries, et al., “The incidence of narcolepsy in Europe: before, during, and after the influenza A(H1N1)pdm09 pandemic and vaccination campaigns,” Vaccine, vol. 31, no. 8, pp. 1246–1254, 2013.
[19]  H. Nohynek, J. Jokinen, M. Partinen et al., “AS03 adjuvanted AH1N1 vaccine associated with an abrupt increase in the incidence of childhood narcolepsy in Finland,” PLoS ONE, vol. 7, no. 3, Article ID e33536, 2012.
[20]  M. Partinen, O. Saarenp??-Heikkil?, I. Ilveskoski et al., “Increased incidence and clinical picture of childhood narcolepsy following the 2009 H1N1 pandemic vaccination campaign in Finland,” PLoS ONE, vol. 7, no. 3, Article ID e33723, 2012.
[21]  F. Han, L. Lin, S. C. Warby et al., “Narcolepsy onset is seasonal and increased following the 2009 H1N1 pandemic in china,” Annals of Neurology, vol. 70, no. 3, pp. 410–417, 2011.
[22]  D. P. Singal and M. A. Blajchman, “Histocompatibility (HL A) antigens, lymphocytotoxic antibodies and tissue antibodies in patients with diabetes mellitus,” Diabetes, vol. 22, no. 6, pp. 429–432, 1973.
[23]  A. Fontana, H. Gast, W. Reith, M. Recher, T. Birchler, and C. L. Bassetti, “Narcolepsy: autoimmunity, effector T cell activation due to infection, or T cell independent, major histocompatibility complex class II induced neuronal loss,” Brain, vol. 133, no. 5, pp. 1300–1311, 2010.
[24]  V. Molina and Y. Shoenfeld, “Infection, vaccines and other environmental triggers of autoimmunity,” Autoimmunity, vol. 38, no. 3, pp. 235–245, 2005.
[25]  P. Sfriso, A. Ghirardello, C. Botsios et al., “Infections and autoimmunity: the multifaceted relationship,” Journal of Leukocyte Biology, vol. 87, no. 3, pp. 385–395, 2010.
[26]  J. S. Dorman and C. H. Bunker, “HLA-DQ locus of the human leukocyte antigen complex and type 1 diabetes mellitus: a HuGE review,” Epidemiologic Reviews, vol. 22, no. 2, pp. 218–227, 2000.
[27]  I. E. van der Horst-Bruinsma, H. Visser, J. M. W. Hazes et al., “HLA-DQ-associated predisposition to and dominant HLA-DR-associated protection against rheumatoid arthritis,” Human Immunology, vol. 60, no. 2, pp. 152–158, 1999.
[28]  J. L. Newton, S. M. J. Harney, B. P. Wordsworth, and M. A. Brown, “A review of the MHC genetics of rheumatoid arthritis,” Genes and Immunity, vol. 5, no. 3, pp. 151–157, 2004.
[29]  M. J. Simmonds, J. M. M. Howson, J. M. Heward et al., “A novel and major association of HLA-C in Graves' disease that eclipses the classical HLA-DRB1 effect,” Human Molecular Genetics, vol. 16, no. 18, pp. 2149–2153, 2007.
[30]  H. T. Petrie, F. Livak, D. Burtrum, and S. Mazel, “T cell receptor gene recombination patterns and mechanisms: cell death, rescue, and T cell production,” The Journal of Experimental Medicine, vol. 182, no. 1, pp. 121–127, 1995.
[31]  A. Szakacs, N. Darin, and T. Hallb??k, “Increased childhood incidence of narcolepsy in western Sweden after H1N1 influenza vaccination,” Neurology, vol. 80, pp. 1315–1321, 2013.
[32]  E. Miller, N. Andrew, L. Stellitano et al., “Risk of narcolepsy in children and young people receiving AS03 adjuvanted pandemic A/H1N1 2009 influenza vaccine: retrospective analysis,” BMJ, vol. 346, article f794, 2013.
[33]  Eurosurveillance Editorial Team, “Swedish Medical Products Agency publishes report from a case inventory study on Pandemrix vaccination and development of narcolepsy with cataplexy,” Euro Surveillance, vol. 16, no. 26, 2011.
[34]  F. Han, L. Lin, J. Li, X. S. Dong, and E. Mignot, “Decreased incidence of childhood narcolepsy 2 years after the 2009 H1N1 winter flu pandemic,” Annals of Neurology, vol. 73, no. 4, p. 560, 2013.
[35]  Agence francaise de sécurité sanitaire des produits de santé, Vaccins pandémiques grippe A (H1N1) et narcolepsie—Actualisation des données—Communiqué.
[36]  The Norwegian Medical Agency press release, Narkolepsi og Pandemrix—nye norske tall, 2011.
[37]  Health Service Executive of Ireland, Statement re Narcolepsy/Pandemrix, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133