全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Study on Instantaneous Time-Frequency Methods for Damage Detection of Nonlinear Moment-Resisting Frames

DOI: 10.1155/2014/523675

Full-Text   Cite this paper   Add to My Lib

Abstract:

Most of the civil structures exhibit nonlinear hysteresis behavior during earthquakes. However, detection of damage in these structures is a challenging issue due to successive change in structural characteristics during a seismic excitation. The current paper presents a promising approach for damage detection of nonlinear moment frames. First, several instantaneous time-frequency methods including Hilbert-Huang transform, direct quadrature, Teager energy operator, and higher-order energy operator are investigated as signal processing tools and the most appropriate method is selected using an outlier analysis. Next, a procedure is proposed based on time-frequency analysis in conjunction with clustering to find damage extension in moment frames under a seismic excitation using frequency, amplitude, and energy damage measures. A probabilistic approach is implemented to investigate capability of the procedure for different ground motion records using incremental dynamic analysis. Results show that frequency is not an appropriate feature to detect damage in nonlinear structures. 1. Introduction During an earthquake many civil structures undergo damages. Therefore, it is important to ensure serviceability and safety of the structures after a seismic excitation. Today, nondestructive evaluation techniques (NDE) are widely utilized for health monitoring and damage detection of structures. At present, current practical methods are based on visual inspection, CT scanning, ultrasonic, stress waves, acoustic emission, and so forth [1]. However, these local damage detection methods are effective only for small structures or structural members. Recently, global vibration-based techniques have attracted researchers since they can solve the problem of large and complicated structures. These methods include power spectrum, Fourier transform, spectrum analysis, and cepstrum analysis [2]. The main drawback of these procedures is that they cannot trace time-varying nature of signals due to their fixed functions. Instead, time-frequency methods are effective tools for analyzing nonstationary signals which makes them appropriate for health monitoring and fault detection of civil, mechanical, and aerospace systems [3]. Doebling et al. [4] and also Fan and Qiao [5] gave a detailed review of vibration-based damage detection methods. An experimental investigation was conducted on a three-story shear building by Xu and Chen [6]. They studied applicability of empirical mode decomposition (EMD) to detect sudden change in structural stiffness. Yang et al. [7] tried to extract

References

[1]  P. Cawley, “Non-destructive testing—current capabilities and future directions,” Journal of Materials Design and Applications, Proceedings of the Institution of Mechanical Engineers L, vol. 215, no. 4, pp. 213–223, 2001.
[2]  C. R. Farrar, S. W. Doebling, and D. A. Nix, “Vibration-based structural damage identification,” Philosophical Transactions of the Royal Society A, vol. 359, no. 1778, pp. 131–149, 2001.
[3]  P. C. Chang, A. Flatau, and S. C. Liu, “Review paper: health monitoring of civil infrastructure,” Structural Health Monitoring, vol. 2, no. 3, pp. 257–267, 2003.
[4]  S. W. Doebling, C. R. Farrar, and M. B. Prime, “A summary review of vibration-based damage identification methods,” Shock and Vibration Digest, vol. 30, no. 2, pp. 91–105, 1998.
[5]  W. Fan and P. Qiao, “Vibration-based damage identification methods: a review and comparative study,” Structural Health Monitoring, vol. 10, no. 1, pp. 83–111, 2011.
[6]  Y. L. Xu and J. Chen, “Structural damage detection using empirical mode decomposition: experimental investigation,” Journal of Engineering Mechanics, vol. 130, no. 11, pp. 1279–1288, 2004.
[7]  J. N. Yang, Y. Lei, S. Lin, and N. Huang, “Hilbert-Huang based approach for structural damage detection,” Journal of Engineering Mechanics, vol. 130, no. 1, pp. 85–95, 2004.
[8]  D. Rezaei and F. Taheri, “Damage identification in beams using empirical mode decomposition,” Structural Health Monitoring, vol. 10, no. 3, pp. 261–274, 2011.
[9]  J. Chen, “Application of empirical mode decomposition in structural health monitoring: some experience,” Advances in Adaptive Data Analysis, vol. 1, no. 4, pp. 601–621, 2009.
[10]  J. Liu, X. Wang, S. Yuan, and G. Li, “On Hilbert-Huang transform approach for structural health monitoring,” Journal of Intelligent Material Systems and Structures, vol. 17, no. 8-9, pp. 721–728, 2006.
[11]  L. Lin and F. Chu, “Feature extraction of AE characteristics in offshore structure model using Hilbert-Huang transform,” Measurement, vol. 44, no. 1, pp. 46–54, 2011.
[12]  W.-K. Hsu, D.-J. Chiou, C.-W. Chen, M.-Y. Liu, W.-L. Chiang, and P.-C. Huang, “Sensitivity of initial damage detection for steel structures using the Hilbert-Huang transform method,” Journal of Vibration and Control, 2012.
[13]  Y. L. Xu, S. W. Chen, and R. C. Zhang, “Modal identification of Di Wang building under Typhoon York using the Hilbert-Huang transform method,” Structural Design of Tall Buildings, vol. 12, no. 1, pp. 21–47, 2003.
[14]  A. Bouchikhi, A.-O. Boudraa, S. Benramdane, and E.-H. Diop, “Empirical mode decomposition and some operators to estimate instantaneous frequency: a comparative study,” in Proceedings of the 3rd International Symposium on Communications, Control, and Signal Processing (ISCCSP '08), pp. 608–613, March 2008.
[15]  S. Saadat, M. N. Noori, G. D. Buckner, T. Furukawa, and Y. Suzuki, “Structural health monitoring and damage detection using an Intelligent Parameter varying (IPV) technique,” International Journal of Non-Linear Mechanics, vol. 39, no. 10, pp. 1687–1697, 2004.
[16]  Y. Xia, System identification and damage detection of nonlinear structures [Ph.D. dissertation], University of California, Irvine, Calif, USA, 2011.
[17]  A. Gupta and H. Krawinkler, “Seismic demands for performance evaluation of steel moment resisting frame structures (SAC Task 5.4.3),” John A. Blume Earthquake Engineering Research Center Report 132, Stanford University, 1999.
[18]  N. E. Huang, S. R. Long, and Z. Shen, “The mechanism for frequency downshift in nonlinear wave evolution,” Advances in Applied Mechanics, vol. 32, pp. 59–117, 1996.
[19]  N. E. Huang, Z. Shen, S. R. Long et al., “The empirical mode decomposition and the Hubert spectrum for nonlinear and non-stationary time series analysis,” Proceedings of the Royal Society A, vol. 454, no. 1971, pp. 903–995, 1998.
[20]  P. Maragos, J. F. Kaiser, and T. F. Quatieri, “On amplitude and frequency demodulation using energy operators,” IEEE Transactions on Signal Processing, vol. 41, no. 4, pp. 1532–1550, 1993.
[21]  F. Salzenstein, A.-O. Boudraa, and J.-C. Cexus, “Generalized higher-order nonlinear energy operators,” Journal of the Optical Society of America A, vol. 24, no. 12, pp. 3717–3727, 2007.
[22]  N. E. Huang, Z. Wu, S. R. Long, K. C. Arnold, X. Chen, and K. Blank, “On instantaneous frequency,” Advances in Adaptive Data Analysis, vol. 1, no. 2, pp. 177–229, 2009.
[23]  Uniform Building Code (UBC), “Uniform building code,” in Proceedings of the International Conference of Building Officials (ICBO '94), Whittier, Calif, USA, 1994.
[24]  FEMA-267, Interim Guidelines, Inspection, Evaluation, Repair, Upgrade and Design of Welded Moment Resisting Steel Structures, The SAC Joint Venture for the Federal Emergency Management Agency, Washington, DC, USA, 1995.
[25]  F. McKenna, G. L. Fenves, and M. H. Scott, OpenSees: Open System for Earthquake Engineering Simulation, Pacific Earthquake Engineering Center, University of California, Berkeley, Calif, USA, 2006.
[26]  MATLAB User’s Guide, vol. 4, The MathWorks Inc., Natick, Mass, USA, 1998.
[27]  V. J. Hodge and J. Austin, “A survey of outlier detection methodologies,” Artificial Intelligence Review, vol. 22, no. 2, pp. 85–126, 2004.
[28]  D. Vamvatsikos and C. Allin Cornell, “Incremental dynamic analysis,” Earthquake Engineering and Structural Dynamics, vol. 31, no. 3, pp. 491–514, 2002.
[29]  FEMA, Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings, FEMA-350, SAC Joint Venture, Federal Emergency Management Agency, Washington, DC, USA, 2000.
[30]  N. Cheraghi and F. Taheri, “A damage index for structural health monitoring based on the empirical mode decomposition,” Journal of Mechanics of Materials and Structures, vol. 2, no. 1, pp. 43–62, 2007.
[31]  J. C. Dunn, “A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters,” Journal of Cybernetics, vol. 3, no. 3, pp. 32–57, 1973.
[32]  P. J. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and validation of cluster analysis,” Journal of Computational and Applied Mathematics, vol. 20, pp. 53–65, 1987.
[33]  FEMA, Quantification of Building Seismic Performance Factors, FEMA P-695, Applied Technology Council for the Federal Emergency Management Agency, Washington, DC, USA, 2009.
[34]  C. A. Cornell, F. Jalayer, R. O. Hamburger, and D. A. Foutch, “Probabilistic basis for 2000 SAC federal emergency management agency steel moment frame guidelines,” Journal of Structural Engineering, vol. 128, no. 4, pp. 526–533, 2002.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133