全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Experimental and Numerical Investigation of the Ground Shock Coupling Factor for Near-Surface Detonations

DOI: 10.1155/2014/789202

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper presents the results of recent ground shock experiments conducted by the U.S. Army Engineer Research and Development Center to further investigate the adequacy of the coupling factor approach to shallow-buried or near-surface detonations. Comparisons between these recent experimental results and results of numerical simulations of the ground shock propagation in soil are presented. It was found that the coupling factor curve currently adopted in design of buried structures does not accurately represent the actual ground shock propagation in soil and that different coupling factor curves are needed for different physical quantities of interest in design. The results presented in this paper also suggest that the coupling factor curves are functions of several parameters in addition to the depth of burial and that numerical simulations can capture reasonably well the ground shock propagation of soil stresses and particle velocities. 1. Introduction The U.S. military has many important deeply buried hardened facilities that must be capable of surviving the effects of conventional weapon attacks, which can result in the detonation of buried explosives in close proximity to the buried structure. These structures are designed to withstand ground shock induced by an explosive event that could occur any distance from the structure, either aboveground or belowground, thereby providing safe harbor for personnel. To achieve a reliable design, accurate methods are needed to predict the ground shock (i.e., radial soil stresses and particle velocities) that propagates from the explosive source to the buried structure. For aboveground detonations, the ground shock induced to the buried structure is minimal, as the vast majority of the explosive energy is transmitted as airblast. As the detonation point moves towards and eventually below the ground surface, the energy transmitted into the ground, and hence the resulting ground shock, increases until a maximum ground shock is produced at a specific depth. The distance from the ground surface to the center of gravity of the detonating charge, considered as positive for below ground explosions, is called depth of burial (DOB). The maximum ground shock is produced at a DOB that is referred to as a “fully coupled” DOB. By definition, the fully coupled DOB is the depth at which burying the bomb any additional amount will not result in additional ground shock transmission. The ground shock for detonations occurring at depths at or below the fully coupled DOB (fully coupled detonations) is quite predictable and can

References

[1]  J. E. Windham, “Ground shock prediction for conventional weapons effects,” Tech. Rep. SL-96-7, U.S. Army Engineer Waterways Experiment Station, Vicksburg, Miss, USA, 1996.
[2]  C. W. Lampson, “Final report on effects of underground explosions,” Tech. Rep. NDRC A-479, National Defense Research Committee, Washington, DC, USA, 1946.
[3]  J. Q. Ehrgott Jr., “Influence of soil properties on the aboveground blast environment from a near-surface detonation,” Tech. Rep. ERDC/GSL TR-11-28, U.S. Army Engineer Research and Development Center, Vicksburg, Miss, USA, 2011.
[4]  J. K. Ingram, “CENSE explosion tests program—CENSE 2, explosions in soil,” Tech. Rep. N-77-6, U.S. Army Engineer Waterways Experiment Station, Vicksburg, Miss, USA, 1977.
[5]  A. E. Miller, “Preliminary results report, ESSEX-1, phase 2: nuclear cratering device simulation,” Tech. Rep. WES PR-E-75-1, U.S. Army Engineer Waterways Experiment Station, Vicksburg, Miss, USA, 1975.
[6]  W. R. Perret, A. J. Chabai, J. W. Reed, and L. J. Vortman, “Project scooter,” Tech. Rep. TID-4500, Sandia Laboratory, Albuquerque, NM, USA, 1963.
[7]  W. R. Perrett, “Operation Nougat, shot hard hat: free-field ground motion studies in granite,” Tech. Rep. POR-1803, Sandia Laboratory, Albuquerque, NM, USA, 1963.
[8]  D. C. Sachs and L. M. Swift, “Small explosion tests—project MOLE,” Tech. Rep. AFSWP-291, Stanford Research Institute, Stanford, Calif, USA, 1955.
[9]  R. B. Vaile Jr., Underground Explosion Tests at Dugway, Stanford Research Institute, Stanford, Calif, USA, 1952.
[10]  J. L. Drake and C. D. Little, Ground Shock from Penetrating Conventional Weapons: Interaction of Non-Nuclear Munitions with Structures, U.S. Air Force Academy, Air Force Academy, Colo, USA, 1983.
[11]  Department of the Army, “Fundamentals of protective design for conventional weapons,” Technical Manual TM 5-855-1, Department of the Army, Washington, DC, USA, 1986.
[12]  J. L. Drake, E. B. Smith, and S. E. Blouin, “Enhancements of the prediction of ground shock from penetrating weapons,” in Proceedings of the 4th International Symposium on the Interaction of Non-Nuclear Munitions with Structures, Panama City Beach, Fla, USA, 1989.
[13]  L. Laine and O. P. Larsen, “Numerical study of how the ground shock coupling factor is influenced by soil properties,” in Proceedings of the 78th Shock and Vibration Symposium, Philadelphia, Pa, USA, 2007.
[14]  C. W. Lampson, Effects of Underground Explosions, IV: Influence of Variations of Soil Type and Depths of Charge and Gauge, Office of Scientific Research and Development, Washington, DC, USA, 1945.
[15]  U.S. Army Engineer Research and Development Center, Computer Code ConWep, U.S. Army Engineer Research and Development Center, Vicksburg, Miss, USA, 2002.
[16]  S. A. Akers and M. D. Adley, “Constitutive models used to simulate penetration and perforation of concrete targets,” in Proceedings of the ASME Pressure Vessels and Piping Conference: Structures under Extreme Loading Conditions, vol. 325, Montreal, Canada, 1996.
[17]  H. D. Zimmerman, R. T. Shimano, and Y. M. Ito, “Early-time ground shock from buried conventional explosives: user’s guide for SABER-PC/CWE,” Instruction Report SL-92-1, US Army Waterways Experiment Station, Vicksburg, Miss, USA, 1992.
[18]  American Society for Testing and Materials, Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System), Designation D2487-06e1, American Society for Testing and Materials, Philadelphia, Pa, USA, 2010.
[19]  G. C. Bessette, J. K. Prentice, R. L. Bell, C. T. Vaughan, and R. A. Cole, “Zapotec: a coupled Eulerian Lagrangian computer code, methodology, and user manual, version 2.67,” Sandia Technical Report SAND2003-3097, Sandia National Laboratories, Albuquerque, NM, USA, 2003.
[20]  S. W. Attaway, K. H. Brown, F. J. Mello et al., “Pronto3D user’s instructions: a transient dynamic code for nonlinear structural analysis,” Tech. Rep. SAND98-1361, Sandia National Laboratories, Albuquerque, NM, USA, 1998.
[21]  R. L. Bell, M. R. Baer, R. M. Brannon et al., “CTH user’s manual and input instructions, version 6.01,” Sandia Technical Report, Sandia National Laboratories, Albuquerque, NM, USA, 2003.
[22]  E. L. Lee, H. C. Hornig, and J. W. Kury, “Adiabatic expansion of high explosive detonation products,” Lawrence Radiation Laboratory Report UCRL-50422, Lawrence Radiation Laboratory, Livermore, Calif, USA, 1968.
[23]  K. S. Holian, T-4 Handbook of Material Properties Databases, Vol. Ic, Equations of State, Los Alamos National Laboratory Report No. LA-10160-MS-v. 1C, Los Alamos National Laboratory Report, Los Alamos, NM, USA, 1984.
[24]  B. Rohani, “Mechanical constitutive models for engineering materials,” Tech. Rep. S-77-19, Soils and Pavements Laboratory, U.S. Army Engineer Waterways Experiment Station, Vicksburg, Miss, USA, 1977.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133