全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Scientifica  2013 

Diagnosis and Treatment of Bone Disease in Multiple Myeloma: Spotlight on Spinal Involvement

DOI: 10.1155/2013/104546

Full-Text   Cite this paper   Add to My Lib

Abstract:

Bone disease is observed in almost 80% of newly diagnosed symptomatic multiple myeloma patients, and spine is the bone site that is more frequently affected by myeloma-induced osteoporosis, osteolyses, or compression fractures. In almost 20% of the cases, spinal cord compression may occur; diagnosis and treatment must be carried out rapidly in order to avoid a permanent sensitive or motor defect. Although whole body skeletal X-ray is considered mandatory for multiple myeloma staging, magnetic resonance imaging is presently considered the most appropriate diagnostic technique for the evaluation of vertebral alterations, as it allows to detect not only the exact morphology of the lesions, but also the pattern of bone marrow infiltration by the disease. Multiple treatment modalities can be used to manage multiple myeloma-related vertebral lesions. Surgery or radiotherapy is mainly employed in case of spinal cord compression, impending fractures, or intractable pain. Percutaneous vertebroplasty or balloon kyphoplasty can reduce local pain in a significant fraction of treated patients, without interfering with subsequent therapeutic programs. Systemic antimyeloma therapy with conventional chemotherapy or, more appropriately, with combinations of conventional chemotherapy and compounds acting on both neoplastic plasma cells and bone marrow microenvironment must be soon initiated in order to reduce bone resorption and, possibly, promote bone formation. Bisphosphonates should also be used in combination with antimyeloma therapy as they reduce bone resorption and prolong patients survival. A multidisciplinary approach is thus needed in order to properly manage spinal involvement in multiple myeloma. 1. Introduction Multiple myeloma (MM) is a clonal B-cell disorder characterized by proliferation and accumulation of B-lymphocytes and plasma cells in the bone marrow and, more rarely, at extramedullary sites. Its annual incidence is 6/100000 in western countries, thus representing the second most common hematological malignancy after non-Hodgkin lymphomas [1]. Bone disease occurs in approximately 80% of patients with newly diagnosed MM, and in 70% of the cases bone pain is the first symptom to be reported at disease onset [2]. Pathological fractures, osteolyses, osteoporosis or, in general, skeletal-related events (SRE), that include also the need for radiotherapy or surgery to the bone, can severely impair patients quality of life and reduce survival [3]. Spine is the bone site that is most frequently affected by MM-related lesions [4]. Vertebral lesions can result

References

[1]  A. Jemal, R. Siegel, J. Xu, and E. Ward, “Cancer statistics, 2010,” CA Cancer Journal for Clinicians, vol. 60, no. 5, pp. 277–300, 2010.
[2]  R. A. Kyle, M. A. Gertz, T. E. Witzig et al., “Review of 1027 patients with newly diagnosed multiple myeloma,” Mayo Clinic Proceedings, vol. 78, no. 1, pp. 21–33, 2003.
[3]  P. I. Croucher and J. F. Apperley, “Bone disease in multiple myeloma,” British Journal of Haematology, vol. 103, no. 4, pp. 902–910, 1998.
[4]  F. E. Lecouvet, B. C. Vande Berg, B. E. Maldague et al., “Vertebral compression fractures in multiple myeloma. Part I. Distribution and appearance at MR imaging,” Radiology, vol. 204, no. 1, pp. 195–199, 1997.
[5]  N. Giuliani, S. Colla, and V. Rizzoli, “New insight in the mechanism of osteoclast activation and formation in multiple myeloma: focus on the receptor activator of NF-κB ligand (RANKL),” Experimental Hematology, vol. 32, no. 8, pp. 685–691, 2004.
[6]  S. Yaccoby, “Osteoblastogenesis and tumor growth in myeloma,” Leukemia and Lymphoma, vol. 51, no. 2, pp. 213–220, 2010.
[7]  N. Giuliani, R. Bataille, C. Mancini, M. Lazzaretti, and S. Barillé, “Myeloma cells induce imbalance in the osteoprotegerin/osteoprotegerin ligand system in the human bone marrow environment,” Blood, vol. 98, no. 13, pp. 3527–3533, 2001.
[8]  O. Sezer, U. Heider, I. Zavrski, C. A. Kühne, and L. C. Hofbauer, “RANK ligand and osteoprotegerin in myeloma bone disease,” Blood, vol. 101, no. 6, pp. 2094–2098, 2003.
[9]  E. Terpos, M. Politou, N. Viniou, and A. Rahemtulla, “Significance of macrophage inflammatory protein-1 alpha (MIP-1α) in multiple myeloma,” Leukemia and Lymphoma, vol. 46, no. 12, pp. 1699–1707, 2005.
[10]  S. Vallet, S. Mukherjee, N. Vaghela et al., “Activin A promotes multiple myeloma-induced osteolysis and is a promising target for myeloma bone disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 11, pp. 5124–5129, 2010.
[11]  E. Tian, F. Zhan, R. Walker et al., “The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma,” The New England Journal of Medicine, vol. 349, no. 26, pp. 2483–2494, 2003.
[12]  N. Giuliani, S. Colla, F. Morandi et al., “Myeloma cells block RUNX2/CBFA1 activity in human bone marrow osteoblast progenitors and inhibit osteoblast formation and differentiation,” Blood, vol. 106, no. 7, pp. 2472–2483, 2005.
[13]  S. Yaccoby, R. N. Pearse, C. L. Johnson, B. Barlogie, Y. Choi, and J. Epstein, “Myeloma interacts with the bone marrow microenvironment to induce osteoclastogenesis and is dependent on osteoclast activity,” British Journal of Haematology, vol. 116, no. 2, pp. 278–290, 2002.
[14]  M. Abe, K. Hiura, J. Wilde et al., “Osteoclasts enhance myeloma cell growth and survival via cell-cell contact: a vicious cycle between bone destruction and myeloma expansion,” Blood, vol. 104, no. 8, pp. 2484–2491, 2004.
[15]  P. C. Gerszten and W. C. Welch, “Current surgical management of metastatic spinal disease,” Oncology, vol. 14, no. 7, pp. 1013–1024, 2000.
[16]  L. M. Calvi, G. B. Adams, K. W. Weibrecht et al., “Osteoblastic cells regulate the haematopoietic stem cell niche,” Nature, vol. 425, no. 6960, pp. 841–846, 2003.
[17]  D. Visnjic, Z. Kalajzic, D. W. Rowe, V. Katavic, J. Lorenzo, and H. L. Aguila, “Hematopoiesis is severely altered in mice with an induced osteoblast deficiency,” Blood, vol. 103, no. 9, pp. 3258–3264, 2004.
[18]  R. Avva, R. L. Vanhemert, B. Barlogie, N. Munshi, and E. J. Angtuaco, “CT-guided biopsy of focal lesions in patients with multiple myeloma may reveal new and more aggressive cytogenetic abnormalities,” The American Journal of Neuroradiology, vol. 22, no. 4, pp. 781–785, 2001.
[19]  B. Brenner, A. Carter, and I. Tatarsky, “Incidence, prognostic significance and therapeutic modalities of central nervous system involvement in multiple myeloma,” Acta Haematologica, vol. 68, no. 2, pp. 77–83, 1982.
[20]  M. A. Dimopoulos, L. A. Moulopoulos, A. Maniatis, and R. Alexanian, “Solitary plasmacytoma of bone and asymptomatic multiple myeloma,” Blood, vol. 96, no. 6, pp. 2037–2044, 2000.
[21]  D. A. Frassica, F. J. Frassica, M. F. Schray, F. H. Sim, and R. A. Kyle, “Solitary plasmacytoma of bone: mayo Clinic experience,” International Journal of Radiation Oncology Biology Physics, vol. 16, no. 1, pp. 43–48, 1989.
[22]  The International Myeloma Working Group, “Criteria for the classification of monoclomal gammopathies, multiple myeloma and related disorders:a report of the Internationa Myeloma Working Group,” British Journal of Haematology, vol. 121, pp. 749–757, 2003.
[23]  B. Bouvard, M. Royer, D. Chappard, M. Audran, E. Hoppé, and E. Legrand, “Monoclonal gammopathy of undetermined significance, multiple myeloma, and osteoporosis,” Joint Bone Spine, vol. 77, no. 2, pp. 120–124, 2010.
[24]  B. Abrahamsen, I. Andersen, S. S. Christensen, J. S. Madsen, and K. Brixen, “Utility of testing for monoclonal bands in serum of patients with suspected osteoporosis: retrospective, cross sectional study,” The British Medical Journal, vol. 330, no. 7495, pp. 818–820, 2005.
[25]  J. Pepe, M. T. Petrucci, I. Nofroni et al., “Lumbar bone mineral density as the major factor determining increased prevalence of vertebral fractures in monoclonal gammopathy of undetermined significance,” British Journal of Haematology, vol. 134, no. 5, pp. 485–490, 2006.
[26]  L. J. Melton III, S. V. Rajkumar, S. Khosla, S. J. Achenbach, A. L. Oberg, and R. A. Kyle, “Fracture risk in monoclonal gammopathy of undetermined significance,” Journal of Bone and Mineral Research, vol. 19, no. 1, pp. 25–30, 2004.
[27]  D. Prasad and D. Schiff, “Malignant spinal-cord compression,” The Lancet Oncology, vol. 6, no. 1, pp. 15–24, 2005.
[28]  F. Bach, B. H. Larsen, K. Rohde et al., “Metastatic spinal cord compression,” Acta Neurochirurgica, vol. 107, no. 1-2, pp. 37–43, 1990.
[29]  S. Helweg-Larsen and P. S. Sorensen, “Symptoms and signs in metastatic spinal cord compression: a study of progression from first symptom until diagnosis in 153 patients,” European Journal of Cancer A, vol. 30, no. 3, pp. 396–398, 1994.
[30]  P. Levack, J. Graham, D. Collie et al., “Don't wait for a sensory level—Listen to the symptoms: a prospective audit of the delays in diagnosis of malignant cord compression,” Clinical Oncology, vol. 14, no. 6, pp. 472–480, 2002.
[31]  H.-S. Jung, W.-H. Jee, T. R. McCauley, K.-Y. Ha, and K.-H. Choi, “Discrimination of metastatic from acute osteoporotic compression spinal fractures with MR imaging,” Radiographics, vol. 23, no. 1, pp. 179–187, 2003.
[32]  C. H. Flouzat-Lachaniette, J. Allain, F. Roudot-Thoraval, and A. Poignard, “Treatment of spinal epidural compression due to hematological malignancies: a single institution's retrospective experience,” European Spine Journal, vol. 22, pp. 548–555, 2013.
[33]  B. G. M. Durie and S. E. Salmon, “A clinical staging system for multiple myeloma. Correlation of measured myeloma cell mass with presenting clinical features, response to treatment, and survival,” Cancer, vol. 36, no. 3, pp. 842–854, 1975.
[34]  M. Dimopoulos, E. Terpos, R. L. Comenzo et al., “International myeloma working group consensus statement and guidelines regarding the current role of imaging techniques in the diagnosis and monitoring of multiple myeloma,” Leukemia, vol. 23, no. 9, pp. 1545–1556, 2009.
[35]  M. Dimopoulos, R. Kyle, J.-P. Fermand et al., “Consensus recommendations for standard investigative workup: report of the International Myeloma Workshop Consensus Panel 3,” Blood, vol. 117, no. 18, pp. 4701–4705, 2011.
[36]  D. B. Smith, J. H. Scarffe, and B. Eddleston, “The prognostic significance of X-ray changes at presentation and reassessment in patients with multiple myeloma,” Hematological Oncology, vol. 6, no. 1, pp. 1–6, 1988.
[37]  M. Horger, C. D. Claussen, U. Bross-Bach et al., “Whole-body low-dose multidetector row-CT in the diagnosis of multiple myeloma: an alternative to conventional radiography,” European Journal of Radiology, vol. 54, no. 2, pp. 289–297, 2005.
[38]  P. Kr?pil, R. Fenk, L. B. Fritz et al., “Comparison of whole-body 64-slice multidetector computed tomography and conventional radiography in staging of multiple myeloma,” European Radiology, vol. 18, no. 1, pp. 51–58, 2008.
[39]  K. Carlson, G. Astrom, R. Nyman, H. Ahlstrom, and B. Simonsson, “MR imaging of multiple myeloma in tumour mass measurement at diagnosis and during treatment,” Acta Radiologica, vol. 36, no. 1, pp. 9–14, 1995.
[40]  A. Baur, A. St?bler, R. Brüning et al., “Diffusion-weighted MR imaging of bone marrow: differentiation of benign versus pathologic compression fractures,” Radiology, vol. 207, no. 2, pp. 349–356, 1998.
[41]  L. A. Moulopoulos, M. A. Dimopoulos, D. Christoulas et al., “Diffuse MRI marrow pattern correlates with increased angiogenesis, advanced disease features and poor prognosis in newly diagnosed myeloma treated with novel agents,” Leukemia, vol. 24, no. 6, pp. 1206–1212, 2010.
[42]  X. Mariette, A.-M. Zagdanski, A. Guermazi et al., “Prognostic value of vertebral lesions detected by magnetic resonance imaging in patients with stage I multiple myeloma,” British Journal of Haematology, vol. 104, no. 4, pp. 723–729, 1999.
[43]  L. A. Moulopoulos, M. A. Dimopoulos, T. L. Smith et al., “Prognostic significance of magnetic resonance imaging in patients with asymptomatic multiple myeloma,” Journal of Clinical Oncology, vol. 13, no. 1, pp. 251–256, 1995.
[44]  J. J. Hillengass, S. Ayyaz, K. Kilk, et al., “Changes in magnetic resonance imaging before and after autologous stem cell transplantation correlate with response and survival in multiple myeloma,” Haematologica, vol. 97, pp. 1757–1760, 2012.
[45]  R. Walker, B. Barlogie, J. Haessler et al., “Magnetic resonance imaging in multiple myeloma: diagnostic and clinical implications,” Journal of Clinical Oncology, vol. 25, no. 9, pp. 1121–1128, 2007.
[46]  A. Agool, B. W. Schot, P. L. Jager, and E. Vellenga, “18F-FLT PET in hematologic disorders: a novel technique to analyze the bone marrow compartment,” Journal of Nuclear Medicine, vol. 47, no. 10, pp. 1592–1598, 2006.
[47]  T. B. Bartel, J. Haessler, T. L. Y. Brown et al., “F18-fluorodeoxyglucose positron emission tomography in the context of other imaging techniques and prognostic factors in multiple myeloma,” Blood, vol. 114, no. 10, pp. 2068–2076, 2009.
[48]  E. Zamagni, C. Nanni, F. Patriarca et al., “A prospective comparison of 18F-fluorodeoxyglucose positron emission tomography-computed tomography, magnetic resonance imaging and whole-body planar radiographs in the assessment of bone disease in newly diagnosed multiple myeloma,” Haematologica, vol. 92, no. 1, pp. 50–55, 2007.
[49]  E. Zamagni, F. Patriarca, C. Nanni et al., “Prognostic relevance of 18-F FDG PET/CT in newly diagnosed multiple myeloma patients treated with up-front autologous transplantation,” Blood, vol. 118, no. 23, pp. 5989–5995, 2011.
[50]  T. Diamond, S. Levy, P. Day, S. Barbagallo, A. Manoharan, and Y. K. Kwan, “Biochemical, histomorphometric and densitometric changes in patients with multiple myeloma: effects of glucocorticoid therapy and disease activity,” British Journal of Haematology, vol. 97, no. 3, pp. 641–648, 1997.
[51]  R. E. Clark, A. J. Flory, E. M. Ion, B. E. Woodcock, B. H. Durham, and W. D. Fraser, “Biochemical markers of bone turnover following high-dose chemotherapy and autografting in multiple myeloma,” Blood, vol. 96, no. 8, pp. 2697–2702, 2000.
[52]  A. Larocca, J. A. Child, G. Cook, et al., “The imact of response on bone directed therapy in patients with multiple myeloma,” Blood, vol. 122, no. 17, pp. 2974–2977, 2013.
[53]  R. J. D'Amato, S. Lentzsch, K. C. Anderson, and M. S. Rogers, “Mechanism of action of thalidomide and 3-aminothalidomide in multiple myeloma,” Seminars in Oncology, vol. 28, no. 6, pp. 597–601, 2001.
[54]  P. Tosi, E. Zamagni, C. Cellini et al., “First-line therapy with thalidomide, dexamethasone and zoledronic acid decreases bone resorption markers in patients with multiple myeloma,” European Journal of Haematology, vol. 76, no. 5, pp. 399–404, 2006.
[55]  E. Terpos, D. Mihou, R. Szydlo et al., “The combination of intermediate doses of thalidomide with dexamethasone is an effective treatment for patients with refractory/relapsed multiple myeloma and normalizes abnormal bone remodeling, through the reduction of sRANKL/osteoprotegerin ratio,” Leukemia, vol. 19, no. 11, pp. 1969–1976, 2005.
[56]  I. Breitkreutz, M. S. Raab, S. Vallet et al., “Lenalidomide inhibits osteoclastogenesis, survival factors and bone-remodeling markers in multiple myeloma,” Leukemia, vol. 22, no. 10, pp. 1925–1932, 2008.
[57]  G. Anderson, M. Gries, N. Kurihara et al., “Thalidomide derivative CC-4047 inhibits osteoclast formation by down-regulation of PU.1,” Blood, vol. 107, no. 8, pp. 3098–3105, 2006.
[58]  M. Bolzoni, P. Storti, S. Bonomini, et al., “Immunomodulatory drugs lenalidomide and pomalidomide inhibit multiple myeloma-induced osteoclast formation and the RANK/OPG ratio in the myeloma microenvironment targeting the expression of adhesion molecules,” Experimental Hematology, vol. 41, pp. 387–397, 2013.
[59]  M. Cavo, “Proteasome inhibitor bortezomib for the treatment of multiple myeloma,” Leukemia, vol. 20, no. 8, pp. 1341–1352, 2006.
[60]  M. Cavo, P. Tacchetti, F. Patriarca et al., “Bortezomib with thalidomide plus dexamethasone compared with thalidomide plus dexamethasone as induction therapy before, and consolidation therapy after, double autologous stem-cell transplantation in newly diagnosed multiple myeloma: a randomised phase 3 study,” The Lancet, vol. 376, no. 9758, pp. 2075–2085, 2010.
[61]  E. Terpos, “Bortezomib directly inhibits osteoclast function in multiple myeloma: implications into the management of myeloma bone disease,” Leukemia Research, vol. 32, no. 11, pp. 1646–1647, 2008.
[62]  M. Zangari, D. Esseltine, C.-K. Lee et al., “Response to bortezomib is associated to osteoblastic activation in patients with multiple myeloma,” British Journal of Haematology, vol. 131, no. 1, pp. 71–73, 2005.
[63]  U. Heider, M. Kaiser, C. Müller et al., “Bortezomib increases osteoblast activity in myeloma patients irrespective of response to treatment,” European Journal of Haematology, vol. 77, no. 3, pp. 233–238, 2006.
[64]  A. Pennisi, X. Li, W. Ling, S. Khan, M. Zangari, and S. Yaccoby, “The proteasome Inhibitor, bortezomib suppresses primary myeloma and stimulates bone formation in myelomatous and nonmyelomatous bones in vivo,” The American Journal of Hematology, vol. 84, no. 1, pp. 6–14, 2009.
[65]  M. Zangari, E. Terpos, F. Zhan, and G. Tricot, “Impact of bortezomib on bone health in myeloma: a review of current evidence,” Cancer Treatment Reviews, vol. 38, no. 8, pp. 968–980, 2012.
[66]  N. Giuliani, F. Morandi, S. Tagliaferri et al., “The proteasome inhibitor bortezomib affects osteoblast differentiation in vitro and in vivo in multiple myeloma patients,” Blood, vol. 110, no. 1, pp. 334–338, 2007.
[67]  M. F. Kaiser, U. Heider, M. Mieth, C. Zang, I. von Metzler, and O. Sezer, “The proteasome inhibitor bortazomib stimulates osteoblastic differentiation of human osteoblast precursors via upregulation of vitamin D receptor signalling,” European Journal of Haematology, vol. 90, pp. 263–272, 2013.
[68]  J. A. Kanis, A. D. Paterson, and R. G. G. Russell, “The use of diphosphonates in myeloma,” British Journal of Haematology, vol. 53, no. 4, pp. 688–690, 1983.
[69]  J. R. Berenson, “Bisphosphonates in multiple myeloma,” Cancer, vol. 80, no. 8, pp. 1661–1667, 1997.
[70]  S. P. Luckman, D. E. Hughes, F. P. Coxon, R. G. G. Russell, and M. J. Rogers, “Nitrogen-containing bisphosphonates inhibit the mevalonate pathway and prevent post-translational prenylation of GTP-binding proteins, including Ras,” Journal of Bone and Mineral Research, vol. 13, no. 4, pp. 581–589, 1998.
[71]  M. J. Rogers, S. Gordon, H. L. Benford et al., “Cellular and molecular mechanisms of action of bisphosphonates,” Cancer, vol. 88, no. 12, pp. 2961–2978, 2000.
[72]  E. V. McCloskey, I. C. M. Maclennan, M. T. Drayson, C. Chapman, J. Dunn, and J. A. Kanis, “A randomized trial of the effect of clodronate on skeletal morbidity in multiple myeloma,” British Journal of Haematology, vol. 100, no. 2, pp. 317–325, 1998.
[73]  J. R. Berenson, A. Lichtenstein, L. Porter et al., “Efficacy of pamidronate in reducing skeletal events in patients with advanced multiple myeloma,” The New England Journal of Medicine, vol. 334, no. 8, pp. 488–493, 1996.
[74]  J. R. Berenson, A. Lichtenstein, L. Porter et al., “Long-term pamidronate treatment of advanced multiple myeloma patients reduces skeletal events,” Journal of Clinical Oncology, vol. 16, no. 2, pp. 593–602, 1998.
[75]  P. Gimsing, K. Carlson, I. Turesson et al., “Effect of pamidronate 30?mg versus 90?mg on physical function in patients with newly diagnosed multiple myeloma (Nordic Myeloma Study Group): a double-blind, randomised controlled trial,” The Lancet Oncology, vol. 11, no. 10, pp. 973–982, 2010.
[76]  L. S. Rosen, D. Gordon, M. Kaminski et al., “Zoledronic acid versus pamidronate in the treatment of skeletal metastases in patients with breast cancer or osteolytic lesions of multiple myeloma: a phase III, double-blind, comparative trial,” Cancer Journal, vol. 7, no. 5, pp. 377–387, 2001.
[77]  P. P. Major, R. J. Cook, B. L. Chen, and M. Zheng, “Survival-adjusted multiple-event analysis for the evaluation of treatment effects of zoledronic acid in patients with bone metastases from solid tumors,” Supportive Cancer Therapy, vol. 2, no. 4, pp. 234–240, 2005.
[78]  G. J. Morgan, F. E. Davies, W. M. Gregory et al., “First-line treatment with zoledronic acid as compared with clodronic acid in multiple myeloma (MRC Myeloma IX): a randomised controlled trial,” The Lancet, vol. 376, no. 9757, pp. 1989–1999, 2010.
[79]  G. J. Morgan, J. A. Child, W. M. Gregory et al., “Effects of zoledronic acid versus clodronic acid on skeletal morbidity in patients with newly diagnosed multiple myeloma (MRC Myeloma IX): secondary outcomes from a randomised controlled trial,” The Lancet Oncology, vol. 12, no. 8, pp. 743–752, 2011.
[80]  A. Aparicio, A. Gardner, Y. Tu, A. Savage, J. Berenson, and A. Lichtenstein, “In vitro cytoreductive effects on multiple myeloma cells induced by bisphosphonates,” Leukemia, vol. 12, no. 2, pp. 220–229, 1998.
[81]  S. Derenne, M. Amiot, S. Barillé et al., “Zoledronate is a potent inhibitor of myeloma cell growth and secretion of IL-6 and MMP-1 by the tumoral environment,” Journal of Bone and Mineral Research, vol. 14, no. 12, pp. 2048–2056, 1999.
[82]  C. M. Shipman, M. J. Rogers, J. F. Apperley, R. G. G. Russell, and P. I. Croucher, “Bisphosphonates induce apoptosis in human myeloma cell lines: a novel anti-tumour activity,” British Journal of Haematology, vol. 98, no. 3, pp. 665–672, 1997.
[83]  V. Kunzmann, E. Bauer, J. Feurle, F. Wei?inger, H.-P. Tony, and M. Wilhelm, “Stimulation of γδ T cells by aminobisphosphonates and induction of antiplasma cell activity in multiple myeloma,” Blood, vol. 96, no. 2, pp. 384–392, 2000.
[84]  R. Mhaskar, J. Redzepovic, K. Wheatley et al., “Bisphosphonates in multiple myeloma,” Cochrane Database of Systematic Reviews, vol. 5, Article ID CD003188, 2012.
[85]  E. Terpos, O. Sezer, P. I. Croucher et al., “The use of bisphosphonates in multiple myeloma: recommendations of an expert panel on behalf of the European Myeloma Network,” Annals of Oncology, vol. 20, no. 8, pp. 1303–1317, 2009.
[86]  G. D'Arena, P. G. Gobbi, C. Broglia et al., “Pamidronate versus observation in asymptomatic myeloma: final results with long-term follow-up of a randomized study,” Leukemia and Lymphoma, vol. 52, no. 5, pp. 771–775, 2011.
[87]  P. Musto, M. T. Petrucci, S. Bringhen et al., “A multicenter, randomized clinical trial comparing zoledronic acid versus observation in patients with asymptomatic myeloma,” Cancer, vol. 113, no. 10, pp. 1588–1595, 2008.
[88]  J. R. Berenson, O. Yellin, R. V. Boccia et al., “Zoledronic acid markedly improves bone mineral density for patients with monoclonal gammopathy of undetermined significance and bone loss,” Clinical Cancer Research, vol. 14, no. 19, pp. 6289–6295, 2008.
[89]  J. Pepe, M. T. Petrucci, M. L. Mascia et al., “The effects of alendronate treatment in osteoporotic patients affected by monoclonal gammopathy of undetermined significance,” Calcified Tissue International, vol. 82, no. 6, pp. 418–426, 2008.
[90]  C. A. Migliorati, M. M. Schubert, D. E. Peterson, and L. M. Seneda, “Bisphosphonate-associated osteonecrosis of mandibular and maxillary bone: an emerging oral complication of supportive cancer therapy,” Cancer, vol. 104, no. 1, pp. 83–93, 2005.
[91]  B. G. M. Durie, M. Katz, and J. Crowley, “Osteonecrosis of the jaws and bisphosphonates,” The New England Journal of Medicine, vol. 335, pp. 99–100, 2005.
[92]  P. Tosi, E. Zamagni, D. Cangini et al., “Osteonecrosis of the jaws in newly diagnosed multiple myeloma patients treated with zoledronic acid and thalidomide-dexamethasone,” Blood, vol. 108, no. 12, pp. 3951–3952, 2006.
[93]  A. Bamias, E. Kastritis, C. Bamia et al., “Osteonecrosis of the jaw in cancer after treatment with bisphosphonates: incidence and risk factors,” Journal of Clinical Oncology, vol. 23, no. 34, pp. 8580–8587, 2005.
[94]  V. Montefusco, F. Gay, F. Spina et al., “Antibiotic prophylaxis before dental procedures may reduce the incidence of osteonecrosis of the jaw in patients with multiple myeloma treated with bisphosphonates,” Leukemia and Lymphoma, vol. 49, no. 11, pp. 2156–2162, 2008.
[95]  M. A. Dimopoulos, E. Kastritis, C. Bamia et al., “Reduction of osteonecrosis of the jaw (ONJ) after implementation of preventive measures in patients with multiple myeloma treated with zoledronic acid,” Annals of Oncology, vol. 20, no. 1, pp. 117–120, 2009.
[96]  J.-J. Body, T. Facon, R. E. Coleman et al., “A study of the biological receptor activator of nuclear factor-κ ligand inhibitor, denosumab, in patients with multiple myeloma or bone metastases from breast cancer,” Clinical Cancer Research, vol. 12, no. 4, pp. 1221–1228, 2006.
[97]  K. Fizazi, A. Lipton, X. Mariette et al., “Randomized phase II trial of denosumab in patients with bone metastases from prostate cancer, breast cancer, or other neoplasms after intravenous bisphosphonates,” Journal of Clinical Oncology, vol. 27, no. 10, pp. 1564–1571, 2009.
[98]  S. Vadhan-Raj, R. von Moos, L. J. Fallowfield, et al., “Clinical benefit in patients with metastatic bone disease: results of a phase 3 study of denosumab versus zoledronic acid,” Annals of Oncology, vol. 23, pp. 3045–3051, 2012.
[99]  A. D. Chantry, D. Heath, A. W. Mulivor et al., “Inhibiting activin-A signaling stimulates bone formation and prevents cancer-induced bone destruction in vivo,” Journal of Bone and Mineral Research, vol. 25, no. 12, pp. 2357–2370, 2010.
[100]  K. M. Abdulkadyrov, G. N. Salogub, and N. K. Khuazaheva, “Ace-011, a soluble activin receptor type Iia IgG-Fc fusion protein, increases hemoglobin (Hb) and improves bone lesions in multiple myeloma patients receiving myelosuppressive chemotherapy: preliminary analysis,” Blood, vol. 114, pp. 749–750, 2009.
[101]  M. Fulciniti, P. Tassone, T. Hideshima et al., “Anti-DKK1 mAb (BHQ880) as a potential therapeutic agent for multiple myeloma,” Blood, vol. 114, no. 2, pp. 371–379, 2009.
[102]  D. Knobel, A. Zhouhair, R. W. Tsang et al., “Prognostic factors in solitary plasmacytoma of the bone: a multicenter Rare Cancer Network study,” BMC Cancer, vol. 6, article 118, 2006.
[103]  W. Huang, D. Cao, J. Ma et al., “Solitary plasmacytoma of cervical spine: treatment and prognosis in patients with neurological lesions and spinal instability,” Spine, vol. 35, no. 8, pp. E278–E284, 2010.
[104]  F. Lecouvet, F. Richard, B. V. Berg et al., “Long-term effects of localized spinal radiation therapy on vertebral fractures and focal lesions appearance in patients with multiple myeloma,” British Journal of Haematology, vol. 96, no. 4, pp. 743–745, 1997.
[105]  M. Balduccp, S. Chiesa, S. Manfrida et al., “Impact of radiotherapy on pain relief and recalcification in plasma cell neoplasms: long-term experience,” Strahlentherapie und Onkologie, vol. 187, no. 2, pp. 114–119, 2011.
[106]  P. Price, P. J. Hoskin, and D. Easton, “Prospective randomised trial of single and multifraction radiotherapy schedules in the treatment of painful bony metastases,” Radiotherapy and Oncology, vol. 6, no. 4, pp. 247–255, 1986.
[107]  A. Olivieri, M. Marchetti, R. Lemoli et al., “Proposed definition of “poor mobilizer” in lymphoma and multiple myeloma: an analytic hierarchy process by ad hoc working group Gruppo ItalianoTrapianto di Midollo Osseo,” Bone Marrow Transplantation, vol. 47, no. 3, pp. 342–351, 2012.
[108]  S. Utzschneider, H. Schmidt, P. Weber, G. P. Schmidt, V. Jansson, and H. R. Dürr, “Surgical therapy of skeletal complications in multiple myeloma,” International Orthopaedics, vol. 35, no. 8, pp. 1209–1213, 2011.
[109]  R. F. Young, E. M. Post, and G. A. King, “Treatment of spinal epidural metastases. Randomized prospective comparison of laminectomy and radiotherapy,” Journal of Neurosurgery, vol. 53, no. 6, pp. 741–748, 1980.
[110]  D. R. Fourney, D. Abi-Said, F. F. Lang, I. E. McCutcheon, and Z. L. Gokaslan, “Use of pedicle screw fixation in the management of malignant spinal disease: experience in 100 consecutive procedures,” Journal of Neurosurgery, vol. 94, no. 1, supplement, pp. 25–37, 2001.
[111]  J. C. Wang, P. Boland, N. Mitra et al., “Single-stage posterolateral transpedicular approach for resection of epidural metastatic spine tumors involving the vertebral body with circumferential reconstruction: results in 140 patients,” Journal of Neurosurgery, vol. 1, no. 3, pp. 287–298, 2004.
[112]  M. A. Hussein, F. D. Vrionis, R. Allison et al., “The role of vertebral augmentation in multiple myeloma: International Myeloma Working Group Consensus Statement,” Leukemia, vol. 22, no. 8, pp. 1479–1484, 2008.
[113]  G. H. Zoarski, P. Snow, W. J. Olan et al., “Percutaneous vertebroplasty for osteoporotic compression fractures: quantitative prospective evaluation of long-term outcomes,” Journal of Vascular and Interventional Radiology, vol. 13, no. 2, pp. 139–148, 2002.
[114]  G. C. Anselmetti, G. Corrao, P. D. Monica et al., “Pain relief following percutaneous vertebroplasty: results of a series of 283 consecutive patients treated in a single institution,” CardioVascular and Interventional Radiology, vol. 30, no. 3, pp. 441–447, 2007.
[115]  L. Ramos, J. A. De Las Heras, S. Sánchez et al., “Medium-term results of percutaneous vertebroplasty in multiple myeloma,” European Journal of Haematology, vol. 77, no. 1, pp. 7–13, 2006.
[116]  R. J. McDonald, A. T. Trout, L. A. Gray, A. Dispenzieri, K. R. Thielen, and D. F. Kallmes, “Vertebroplasty in multiple myeloma: outcomes in a large patient series,” The American Journal of Neuroradiology, vol. 29, no. 4, pp. 642–648, 2008.
[117]  G. C. Anselmetti, A. Manca, F. Montemurro et al., “Percutaneous vertebroplasty in multiple myeloma: prospective long-term follow-up in 106 consecutive patients,” CardioVascular and Interventional Radiology, vol. 35, no. 1, pp. 139–145, 2012.
[118]  H. Deramond, G. Saliou, M. Aveillan, P. Lehmann, and J. N. Vallée, “Respective contributions of vertebroplasty and kyphoplasty to the management of osteoporotic vertebral fractures,” Joint Bone Spine, vol. 73, no. 6, pp. 610–613, 2006.
[119]  C. Kasperk, A. Haas, J. Hillengass et al., “Kyphoplasty in patients with multiple myeloma a retrospective comparative pilot study,” Journal of Surgical Oncology, vol. 105, no. 7, pp. 679–686, 2012.
[120]  J. Koreth, C. S. Cutler, B. Djulbegovic et al., “High-dose therapy with single autologous transplantation versus chemotherapy for newly diagnosed multiple myeloma: a systematic review and meta-analysis of randomized Controlled trials,” Biology of Blood and Marrow Transplantation, vol. 13, no. 2, pp. 183–196, 2007.
[121]  B. Barlogie, M. Attal, J. Crowley et al., “Long-term follow-up of autotransplantation trials for multiple myeloma: update of protocols conducted by the Intergroupe Francophone du Myelome, Southwest Oncology Group, and University of Arkansas for Medical Sciences,” Journal of Clinical Oncology, vol. 28, no. 21, p. 3543, 2010.
[122]  H. Brenner, A. Gondos, and D. Pulte, “Recent major improvement in long-term survival of younger patients with multiple myeloma,” Blood, vol. 111, no. 5, pp. 2521–2526, 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133