全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Scientifica  2013 

Protein Machineries Involved in the Attachment of Heme to Cytochrome c: Protein Structures and Molecular Mechanisms

DOI: 10.1155/2013/505714

Full-Text   Cite this paper   Add to My Lib

Abstract:

Cytochromes c (Cyt c) are ubiquitous heme-containing proteins, mainly involved in electron transfer processes, whose structure and functions have been and still are intensely studied. Surprisingly, our understanding of the molecular mechanism whereby the heme group is covalently attached to the apoprotein (apoCyt) in the cell is still largely unknown. This posttranslational process, known as Cyt c biogenesis or Cyt c maturation, ensures the stereospecific formation of the thioether bonds between the heme vinyl groups and the cysteine thiols of the apoCyt heme binding motif. To accomplish this task, prokaryotic and eukaryotic cells have evolved distinctive protein machineries composed of different proteins. In this review, the structural and functional properties of the main maturation apparatuses found in gram-negative and gram-positive bacteria and in the mitochondria of eukaryotic cells will be presented, dissecting the Cyt c maturation process into three functional steps: (i) heme translocation and delivery, (ii) apoCyt thioreductive pathway, and (iii) apoCyt chaperoning and heme ligation. Moreover, current hypotheses and open questions about the molecular mechanisms of each of the three steps will be discussed, with special attention to System I, the maturation apparatus found in gram-negative bacteria. 1. Introduction Cytochromes c (Cyts c) are ubiquitous heme-containing proteins involved in a variety of critical processes of cellular metabolism; since their discovery by Keilin in the early 1920s, they have been the focus of multidisciplinary scientific interests and nowadays are considered textbook proteins in biochemistry courses. However, many aspects of c-type cytochromes are still to be unveiled, from the control and fine-tuning of electron transfer reactions and heme reactivity [1–3] to the description of Cyt c folding pathways and stability [4–6]. The presence of the covalently bound heme prosthetic group dictates the functions of Cyts c, which are associated mainly with electron transfer processes in aerobic and anaerobic respiration and in photosynthesis [7, 8]; however, it is now clear that Cyts c play important roles also in other cellular processes such as H2O2 scavenging, cytochrome c oxidase assembly [9], lipid signaling [10], or apoptotic processes in the eukaryotic cells [11, 12]. This review deals with a complex and still largely unknown process, whereby the heme is covalently and stereospecifically attached to the apoprotein (apoCyt) in the cell; this posttranslational process is known as Cyt c biogenesis or Cyt c maturation. Over

References

[1]  M. G. Galinato, J. G. Kleingardner, S. E. Bowman et al., “Heme-protein vibrational couplings in cytochrome c provide a dynamic link that connects the heme-iron and the protein surface,” Proceedings of the National Academy of Sciences, vol. 109, no. 23, pp. 8896–8900, 2012.
[2]  H. B. Gray and J. R. Winkler, “Electron flow through metalloproteins,” Biochimica et Biophysica Acta, vol. 1797, no. 9, pp. 1563–1572, 2010.
[3]  P. Ascenzi, R. Santucci, M. Coletta, and F. Polticelli, “Cytochromes: reactivity of the “dark side” of the heme,” Biophysical Chemistry, vol. 152, no. 1–3, pp. 21–27, 2010.
[4]  S. Yamada, N. D. Bouley Ford, G. E. Keller, W. C. Ford, H. B. Gray, and J. R. Winkler, “Snapshots of a protein folding intermediate,” Proceedings of the National Academy of Sciences, vol. 110, no. 5, pp. 1606–1610, 2013.
[5]  P. Weinkam, J. Zimmermann, F. E. Romesberg, and P. G. Wolynes, “The folding energy landscape and free energy excitations of cytochrome c,” Accounts of Chemical Research, vol. 43, no. 5, pp. 652–660, 2010.
[6]  M. Yamanaka, M. Masanari, and Y. Sambongi, “Conferment of folding ability to a naturally unfolded apocytochrome c through introduction of hydrophobic amino acid residues,” Biochemistry, vol. 50, no. 12, pp. 2313–2320, 2011.
[7]  G. W. Moore and G. W. Pettigrew, Cytochrome C: Evolutionary, Structural, and Physicochemical Aspects, Springer, Berlin, Germany, 1990.
[8]  I. Bertini, G. Cavallaro, and A. Rosato, “Cytochrome c: occurrence and functions,” Chemical Reviews, vol. 106, no. 1, pp. 90–115, 2006.
[9]  D. A. Pearce and F. Sherman, “Degradation of cytochrome oxidase subunits in mutants of yeast lacking cytochrome c and suppression of the degradation by mutation of yme1,” Journal of Biological Chemistry, vol. 270, no. 36, pp. 20879–20882, 1995.
[10]  G. Silkstone, S. M. Kapetanaki, I. Husu, M. H. Vos, and M. T. Wilson, “Nitric oxide binding to the cardiolipin complex of ferric cytochrome c,” Biochemistry, vol. 51, no. 34, pp. 6760–6766, 2012.
[11]  M. Giorgio, E. Migliaccio, F. Orsini et al., “Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis,” Cell, vol. 122, no. 2, pp. 221–233, 2005.
[12]  S. M. Kilbride and J. H. Prehn, “Central roles of apoptotic proteins in mitochondrial function,” Oncogene, vol. 32, no. 22, pp. 2703–2711, 2013.
[13]  T. N?ll and G. N?ll, “Strategies for “wiring” redox-active proteins to electrodes and applications in biosensors, biofuel cells, and nanotechnology,” Chemical Society Reviews, vol. 40, no. 7, pp. 3564–3576, 2011.
[14]  G. Layer, J. Reichelt, D. Jahn, and D. W. Heinz, “Structure and function of enzymes in heme biosynthesis,” Protein Science, vol. 19, no. 6, pp. 1137–1161, 2010.
[15]  S. Severance and I. Hamza, “Trafficking of heme and porphyrins in metazoa,” Chemical Reviews, vol. 109, no. 10, pp. 4596–4616, 2009.
[16]  P. Hamel, V. Corvest, P. Giegé, and G. Bonnard, “Biochemical requirements for the maturation of mitochondrial c-type cytochromes,” Biochimica et Biophysica Acta, vol. 1793, no. 1, pp. 125–138, 2009.
[17]  W. R. Fisher, H. Taniuchi, and C. B. Anfinsen, “On the role of heme in the formation of the structure of cytochrome c,” Journal of Biological Chemistry, vol. 248, no. 9, pp. 3188–3195, 1973.
[18]  M. Yamanaka, H. Mita, Y. Yamamoto, and Y. Sambongi, “Heme is not required for aquifex aeolicus cytochrome c555 polypeptide folding,” Bioscience, Biotechnology and Biochemistry, vol. 73, no. 9, pp. 2022–2025, 2009.
[19]  C. Travaglini-Allocatelli, S. Gianni, and M. Brunori, “A common folding mechanism in the cytochrome c family,” Trends in Biochemical Sciences, vol. 29, no. 10, pp. 535–541, 2004.
[20]  A. Borgia, D. Bonivento, C. Travaglini-Allocatelli, A. Di Matteo, and M. Brunori, “Unveiling a hidden folding intermediate in c-type cytochromes by protein engineering,” Journal of Biological Chemistry, vol. 281, no. 14, pp. 9331–9336, 2006.
[21]  E. Enggist, L. Th?ny-Meyer, P. Güntert, and K. Pervushin, “NMR structure of the heme chaperone CcmE reveals a novel functional motif,” Structure, vol. 10, no. 11, pp. 1551–1557, 2002.
[22]  A. di Matteo, N. Calosci, S. Gianni, P. Jemth, M. Brunori, and C. Travaglini-Allocatelli, “Structural and functional characterization of CcmG from pseudomonas aeruginosa, a key component of the bacterial cytochrome c maturation apparatus,” Proteins, vol. 78, no. 10, pp. 2213–2221, 2010.
[23]  A. di Matteo, S. Gianni, M. E. Schininà et al., “A strategic protein in cytochrome c maturation: three-dimensional structure of CcmH and binding to apocytochrome c,” Journal of Biological Chemistry, vol. 282, no. 37, pp. 27012–27019, 2007.
[24]  A. Crow, R. M. Acheson, N. E. Le Brun, and A. Oubrie, “Structural basis of redox-coupled protein substrate selection by the cytochrome c biosynthesis protein ResA,” Journal of Biological Chemistry, vol. 279, no. 22, pp. 23654–23660, 2004.
[25]  E. di Silvio, A. di Matteo, and C. Travaglini-Allocatelli, “The Redox pathway of Pseudomonas aeruginosa cytochrome c biogenesis,” Journal of Proteins and Proteomics, vol. 3, no. 1, pp. 1–7, 2012.
[26]  L. Th?ny-Meyer and P. Künzler, “Translocation to the periplasm and signal sequence cleavage of preapocytochrome c depend on sec and lep, but not on the ccm gene products,” European Journal of Biochemistry, vol. 246, no. 3, pp. 794–799, 1997.
[27]  S. J. Facey and A. Kuhn, “Biogenesis of bacterial inner-membrane proteins,” Cellular and Molecular Life Sciences, vol. 67, no. 14, pp. 2343–2362, 2010.
[28]  K. Diekert, A. I. de Kroon, U. Ahting et al., “Apocytochrome c requires the TOM complex for translocation across the mitochondrial outer membrane,” The EMBO Journal, vol. 20, no. 20, pp. 5626–5635, 2001.
[29]  N. Wiedemann, V. Kozjak, T. Prinz et al., “Biogenesis of yeast mitochondrial cytochrome c: a unique relationship to the TOM machinery,” Journal of Molecular Biology, vol. 327, no. 2, pp. 465–474, 2003.
[30]  F.-U. Hartl, N. Pfanner, and W. Neupert, “Translocation intermediates on the import pathway of proteins into mitochondria,” Biochemical Society Transactions, vol. 15, no. 1, pp. 95–97, 1987.
[31]  B. S. Glick, A. Brandt, K. Cunningham, S. Muller, R. L. Hallberg, and G. Schatz, “Cytochromes c1 and b2 are sorted to the intermembrane space of yeast mitochondria by a stop-transfer mechanism,” Cell, vol. 69, no. 5, pp. 809–822, 1992.
[32]  G. Howe and S. Merchant, “Role of heme in the biosynthesis of cytochrome c6,” Journal of Biological Chemistry, vol. 269, no. 8, pp. 5824–5832, 1994.
[33]  S. S. Nakamoto, P. Hamel, and S. Merchant, “Assembly of chloroplast cytochromes b and c,” Biochimie, vol. 82, no. 6-7, pp. 603–614, 2000.
[34]  C. Sanders, S. Turkarslan, D.-W. Lee, and F. Daldal, “Cytochrome c biogenesis: the Ccm system,” Trends in Microbiology, vol. 18, no. 6, pp. 266–274, 2010.
[35]  J. M. Stevens, D. A. Mavridou, R. Hamer, P. Kritsiligkou, A. D. Goddard, and S. J. Ferguson, “Cytochrome c biogenesis system I,” The FEBS Journal, vol. 278, no. 22, pp. 4170–4178, 2011.
[36]  R. G. Kranz, C. Richard-Fogal, J.-S. Taylor, and E. R. Frawley, “Cytochrome c biogenesis: mechanisms for covalent modifications and trafficking of heme and for heme-iron redox control,” Microbiology and Molecular Biology Reviews, vol. 73, no. 3, pp. 510–528, 2009.
[37]  J. W. A. Allen, “Cytochrome c biogenesis in mitochondria—systems III and V,” The FEBS Journal, vol. 278, no. 22, pp. 4198–4216, 2011.
[38]  D. A. Mavridou, S. J. Ferguson, and J. M. Stevens, “Cytochrome c assembly,” IUBMB Life, vol. 65, no. 3, pp. 209–216, 2013.
[39]  I. Bertini, G. Cavallaro, and A. Rosato, “Evolution of mitochondrial-type cytochrome c domains and of the protein machinery for their assembly,” Journal of Inorganic Biochemistry, vol. 101, no. 11-12, pp. 1798–1811, 2007.
[40]  B. S. Goldman and R. G. Kranz, “Evolution and horizontal transfer of an entire biosynthetic pathway for cytochrome c biogenesis: helicobacter, deinococcus, archae and more,” Molecular Microbiology, vol. 27, no. 4, pp. 871–873, 1998.
[41]  C. L. Richard-Fogal, E. R. Frawley, E. R. Bonner, H. Zhu, B. San Francisco, and R. G. Kranz, “A conserved haem redox and trafficking pathway for cofactor attachment,” The EMBO Journal, vol. 28, no. 16, pp. 2349–2359, 2009.
[42]  L. Thony-Meyer, F. Fischer, P. Kunzler, D. Ritz, and H. Hennecke, “Escherichia coli genes required for cytochrome c maturation,” Journal of Bacteriology, vol. 177, no. 15, pp. 4321–4326, 1995.
[43]  C. S. Beckett, J. A. Loughman, K. A. Karberg, G. M. Donato, W. E. Goldman, and R. G. Kranz, “Four genes are required for the system II cytochrome c biogenesis pathway in Bordetella pertussis, a unique bacterial model,” Molecular Microbiology, vol. 38, no. 3, pp. 465–481, 2000.
[44]  N. E. Le Brun, J. Bengtsson, and L. Hederstedt, “Genes required for cytochrome c synthesis in Bacillus subtilis,” Molecular Microbiology, vol. 36, no. 3, pp. 638–650, 2000.
[45]  P. Giegé, J. M. Grienenberger, and G. Bonnard, “Cytochrome c biogenesis in mitochondria,” Mitochondrion, vol. 8, no. 1, pp. 61–73, 2008.
[46]  R. E. Feissner, C. L. Richard-Fogal, E. R. Frawley, J. A. Loughman, K. W. Earley, and R. G. Kranz, “Recombinant cytochromes c biogenesis systems I and II and analysis of haem delivery pathways in Escherichia coli,” Molecular Microbiology, vol. 60, no. 3, pp. 563–577, 2006.
[47]  N. P. Cianciotto, P. Cornelis, and C. Baysse, “Impact of the bacterial type I cytochrome c maturation system on different biological processes,” Molecular Microbiology, vol. 56, no. 6, pp. 1408–1415, 2005.
[48]  E. Arslan, H. Schulz, R. Zufferey, P. Künzler, and L. Th?ny-Meyer, “Overproduction of the Bradyrhizobium japonicum c-type cytochrome subunits of the cbb3 oxidase in Escherichia coli,” Biochemical and Biophysical Research Communications, vol. 251, no. 3, pp. 744–747, 1998.
[49]  C. Sanders and H. Lill, “Expression of prokaryotic and eukaryotic cytochromes c in Escherichia coli,” Biochimica et Biophysica Acta, vol. 1459, no. 1, pp. 131–138, 2000.
[50]  M. Braun and L. Th?ny-Meyer, “Biosynthesis of artificial microperoxidases by exploiting the secretion and cytochrome c maturation apparatuses of Escherichia coli,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 35, pp. 12830–12835, 2004.
[51]  B. Baert, C. Baysse, S. Matthijs, and P. Cornelis, “Multiple phenotypic alterations caused by a c-type cytochrome maturation ccmC gene mutation in Pseudomonas aeruginosa,” Microbiology, vol. 154, no. 1, pp. 127–138, 2008.
[52]  S. Turkarslan, C. Sanders, and F. Daldal, “Extracytoplasmic prosthetic group ligation to apoproteins: maturation of c-type cytochromes,” Molecular Microbiology, vol. 60, no. 3, pp. 537–541, 2006.
[53]  P. M. Jones and A. M. George, “The ABC transporter structure and mechanism: perspectives on recent research,” Cellular and Molecular Life Sciences, vol. 61, no. 6, pp. 682–699, 2004.
[54]  O. Christensen, E. M. Harvat, L. Th?ny-Meyer, S. J. Ferguson, and J. M. Stevens, “Loss of ATP hydrolysis activity by CcmAB results in loss of c-type cytochrome synthesis and incomplete processing of CcmE,” The FEBS Journal, vol. 274, no. 9, pp. 2322–2332, 2007.
[55]  J.-H. Lee, E. M. Harvat, J. M. Stevens, S. J. Ferguson, and M. H. Saier Jr., “Evolutionary origins of members of a superfamily of integral membrane cytochrome c biogenesis proteins,” Biochimica et Biophysica Acta, vol. 1768, no. 9, pp. 2164–2181, 2007.
[56]  D. L. Beckman, D. R. Trawick, and R. G. Kranz, “Bacterial cytochromes c biogenesis,” Genes and Development, vol. 6, no. 2, pp. 268–283, 1992.
[57]  H. Schulz, R. A. Fabianek, E. C. Pellicioli, H. Hennecke, and L. Th?ny-Meyer, “Heme transfer to the heme chaperone CcmE during cytochrome c maturation requires the CcmC protein, which may function independently of the ABC-transporter CcmAB,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 11, pp. 6462–6467, 1999.
[58]  Q. Ren and L. Th?ny-Meyer, “Physical Interaction of CcmC with Heme and the Heme Chaperone CcmE during Cytochrome c Maturation,” Journal of Biological Chemistry, vol. 276, no. 35, pp. 32591–32596, 2001.
[59]  C. Richard-Fogal and R. G. Kranz, “The CcmC:heme:CcmE complex in heme trafficking and cytochrome c biosynthesis,” Journal of Molecular Biology, vol. 401, no. 3, pp. 350–362, 2010.
[60]  V. K. Viswanathan, S. Kurtz, L. L. Pedersen et al., “The cytochrome C maturation locus of Legionella pneumophila promotes iron assimilation and intracellular infection and contains a strain-specific insertion sequence element,” Infection and Immunity, vol. 70, no. 4, pp. 1842–1852, 2002.
[61]  U. Ahuja and L. Th?ny-Meyer, “CcmD is involved in complex formation between CcmC and the heme chaperone CcmE during cytochrome c maturation,” Journal of Biological Chemistry, vol. 280, no. 1, pp. 236–243, 2005.
[62]  C. L. Richard-Fogal, E. R. Frawley, and R. G. Kranz, “Topology and function of CcmD in cytochrome C maturation,” Journal of Bacteriology, vol. 190, no. 10, pp. 3489–3493, 2008.
[63]  H. Schulz, H. Hennecke, and L. Th?ny-Meyer, “Prototype of a heme chaperone essential for cytochrome c maturation,” Science, vol. 281, no. 5380, pp. 1197–1200, 1998.
[64]  F. Arnesano, L. Banci, P. D. Barker et al., “Solution structure and characterization of the heme chaperone CcmE,” Biochemistry, vol. 41, no. 46, pp. 13587–13594, 2002.
[65]  A. G. Murzin, “OB(oligonucleotide/oligosaccharide binding)-fold: common structural and functional solution for non-homologous sequences,” The EMBO Journal, vol. 12, no. 3, pp. 861–867, 1993.
[66]  L. Th?ny-Meyer, “A heme chaperone for cytochrome c biosynthesis,” Biochemistry, vol. 42, no. 45, pp. 13099–13105, 2003.
[67]  E. M. Harvat, C. Redfield, J. M. Stevens, and S. J. Ferguson, “Probing the heme-binding site of the cytochrome c maturation protein CcmE,” Biochemistry, vol. 48, no. 8, pp. 1820–1828, 2009.
[68]  D. Lee, K. Pervushin, D. Bischof, M. Braun, and L. Th?ny-Meyer, “Unusual heme-histidine bond in the active site of a chaperone,” Journal of the American Chemical Society, vol. 127, no. 11, pp. 3716–3717, 2005.
[69]  A. D. Goddard, J. M. Stevens, F. Rao et al., “c-Type cytochrome biogenesis can occur via a natural Ccm system lacking CcmH, CcmG, and the heme-binding histidine of CcmE,” Journal of Biological Chemistry, vol. 285, no. 30, pp. 22882–22889, 2010.
[70]  J. M. Aramini, K. Hamilton, P. Rossi et al., “Solution NMR structure, backbone dynamics, and heme-binding properties of a novel cytochrome c maturation protein CcmE from Desulfovibrio vulgaris,” Biochemistry, vol. 51, no. 18, pp. 3705–3707, 2012.
[71]  T. Uchida, J. M. Stevens, O. Daltrop et al., “The interaction of covalently bound heme with the cytochrome c maturation protein CcmE,” Journal of Biological Chemistry, vol. 279, no. 50, pp. 51981–51988, 2004.
[72]  I. García-Rubio, M. Braun, I. Gromov, L. Th?ny-Meyer, and A. Schweiger, “Axial coordination of heme in ferric CcmE chaperone characterized by EPR spectroscopy,” Biophysical Journal, vol. 92, no. 4, pp. 1361–1373, 2007.
[73]  L. Th?ny-Meyer, “Haem-polypeptide interactions during cytochrome c maturation,” Biochimica et Biophysica Acta, vol. 1459, no. 2-3, pp. 316–324, 2000.
[74]  J. A. Keightley, D. Sanders, T. R. Todaro, A. Pastuszyn, and J. A. Fee, “Cloning expression in Escherichia coli of the cytochrome c552 gene from Thermus thermophilus HB8. Evidence for genetic linkage to an ATP- binding cassette protein and initial characterization of the cycA gene products,” Journal of Biological Chemistry, vol. 273, no. 20, pp. 12006–12016, 1998.
[75]  E. M. Monika, B. S. Goldman, D. L. Beckman, and R. G. Kranz, “A thioreduction pathway tethered to the membrane for periplasmic cytochromes c biogenesis; In vitro and in vivo studies,” Journal of Molecular Biology, vol. 271, no. 5, pp. 679–692, 1997.
[76]  M. Throne-Holst, L. Th?ny-Meyer, and L. Hederstedt, “Escherichia coli ccm in-frame deletion mutants can produce periplasmic cytochrome b but not cytochrome c,” FEBS Letters, vol. 410, no. 2-3, pp. 351–355, 1997.
[77]  U. Ahuja and L. Th?ny-Meyer, “Dynamic features of a heme delivery system for cytochrome c maturation,” Journal of Biological Chemistry, vol. 278, no. 52, pp. 52061–52070, 2003.
[78]  J. W. A. Allen, P. D. Barker, O. Daltrop et al., “Why isn't “standard” heme good enough for c-type and di-type cytochromes?” Dalton Transactions, no. 21, pp. 3410–3418, 2005.
[79]  K. Inaba and K. Ito, “Structure and mechanisms of the DsbB-DsbA disulfide bond generation machine,” Biochimica et Biophysica Acta, vol. 1783, no. 4, pp. 520–529, 2008.
[80]  H. Kadokura, F. Katzen, and J. Beckwith, “Protein disulfide bond formation in prokaryotes,” Annual Review of Biochemistry, vol. 72, pp. 111–135, 2003.
[81]  S. R. Shouldice, B. Heras, P. M. Walden, M. Totsika, M. A. Schembri, and J. L. Martin, “Structure and function of DsbA, a key bacterial oxidative folding catalyst,” Antioxidants and Redox Signaling, vol. 14, no. 9, pp. 1729–1760, 2011.
[82]  R. Metheringham, L. Griffiths, H. Crooke, S. Forsythe, and J. Cole, “An essential role for DsbA in cytochrome c synthesis and formate-dependent nitrite reduction by Escherichia coli K-12,” Archives of Microbiology, vol. 164, no. 4, pp. 301–307, 1995.
[83]  Y. Sambongi and S. J. Ferguson, “Mutants of Escherichia coli lacking disulphide oxidoreductases DsbA and DsbB cannot synthesise an exogenous monohaem c-type cytochrome except in the presence of disulphide compounds,” FEBS Letters, vol. 398, no. 2-3, pp. 265–268, 1996.
[84]  D. A. Mavridou, S. J. Ferguson, and J. M. Stevens, “The interplay between the disulfide bond formation pathway and cytochrome c maturation in Escherichia coli,” FEBS Letters, vol. 586, no. 12, pp. 1702–1707, 2012.
[85]  C. U. Stirnimann, A. Rozhkova, U. Grauschopf, M. G. Grütter, R. Glockshuber, and G. Capitani, “Structural basis and kinetics of DsbD-dependent cytochrome c maturation,” Structure, vol. 13, no. 7, pp. 985–993, 2005.
[86]  N. Ouyang, Y.-G. Gao, H.-Y. Hu, and Z.-X. Xia, “Crystal structures of E. coli CcmG and its mutants reveal key roles of the N-terminal β-sheet and the fingerprint region,” Proteins, vol. 65, no. 4, pp. 1021–1031, 2006.
[87]  M. A. Edeling, L. W. Guddat, R. A. Fabianek et al., “Crystallization and preliminary diffraction studies of native and selenomethionine CcmG (CycY, DsbE),” Acta Crystallographica D, vol. 57, no. 9, pp. 1293–1295, 2001.
[88]  R. A. Fabianek, M. Huber-Wunderlich, R. Glockshuber, P. Künzler, H. Hennecke, and L. Th?ny-Meyer, “Characterization of the Bradyrhizobium japonicum CycY protein, a membrane-anchored periplasmic thioredoxin that may play a role as a reductant in the biogenesis of c-type cytochromes,” Journal of Biological Chemistry, vol. 272, no. 7, pp. 4467–4473, 1997.
[89]  G. B. Kallis and A. Holmgren, “Differential reactivity of the functional sulfhydryl groups of cysteine-32 and cysteine-32 present in the reduced form of thioredoxin from Escherichia coli,” Journal of Biological Chemistry, vol. 255, no. 21, pp. 10261–10265, 1980.
[90]  P. T. Chivers and R. T. Raines, “General acid/base catalysis in the active site of Escherichia coli thioredoxin,” Biochemistry, vol. 36, no. 50, pp. 15810–15816, 1997.
[91]  X. M. Zheng, J. Hong, H. Y. Li, D. H. Lin, and H. Y. Hu, “Biochemical properties and catalytic domain structure of the CcmH protein from Escherichia coli,” Biochim Biophys Acta, vol. 1824, no. 12, pp. 1394–1400, 2012.
[92]  U. Ahuja, A. Rozhkova, R. Glockshuber, L. Th?ny-Meyer, and O. Einsle, “Helix swapping leads to dimerization of the N-terminal domain of the c-type cytochrome maturation protein CcmH from Escherichia coli,” FEBS Letters, vol. 582, no. 18, pp. 2779–2786, 2008.
[93]  R. A. Fabianek, T. Hofer, and L. Th?ny-Meyer, “Characterization of the Escherichia coli CcmH protein reveals new insights into the redox pathway required for cytochrome c maturation,” Archives of Microbiology, vol. 171, no. 2, pp. 92–100, 1999.
[94]  E. Reid, J. Cole, and D. J. Eaves, “The Escherichia coli CcmG protein fulfils a specific role in cytochrome c assembly,” Biochemical Journal, vol. 355, no. 1, pp. 51–58, 2001.
[95]  Q. Ren, U. Ahuja, and L. Th?ny-Meyer, “A bacterial cytochrome c heme lyase: CcmF forms a complex with the heme chaperone CcmE and CcmH but not with apocytochrome c,” Journal of Biological Chemistry, vol. 277, no. 10, pp. 7657–7663, 2002.
[96]  E. H. Meyer, P. Giegé, E. Gelhaye et al., “AtCCMH, an essential component of the c-type cytochrome maturation pathway in Arabidopsis mitochondria, interacts with apocytochrome c,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 44, pp. 16113–16118, 2005.
[97]  C. Rios-Velazquez, R. Coller, and T. J. Donohue, “Features of Rhodobacter sphaeroides CcmFH,” Journal of Bacteriology, vol. 185, no. 2, pp. 422–431, 2003.
[98]  C. Sanders, M. Deshmukh, D. Astor, R. G. Kranz, and F. Daldal, “Overproduction of CcmG and CcmFHRc fully suppresses the c-type cytochrome biogenesis defect of Rhodobacter capsulatus CcmI-null mutants,” Journal of Bacteriology, vol. 187, no. 12, pp. 4245–4256, 2005.
[99]  A. F. Verissimo, H. Yang, X. Wu, C. Sanders, and F. Daldal, “CcmI subunit of CcmFHI heme ligation complex functions as an apocytochrome c chaperone during c-type cytochrome maturation,” Journal of Biological Chemistry, vol. 286, no. 47, pp. 40452–40463, 2011.
[100]  K. Bryson, L. J. McGuffin, R. L. Marsden, J. J. Ward, J. S. Sodhi, and D. T. Jones, “Protein structure prediction servers at University College London,” Nucleic Acids Research, vol. 33, no. 2, pp. W36–W38, 2005.
[101]  D. T. Jones, “Protein secondary structure prediction based on position-specific scoring matrices,” Journal of Molecular Biology, vol. 292, no. 2, pp. 195–202, 1999.
[102]  C. Sanders, C. Boulay, and F. Daldal, “Membrane-spanning and periplasmic segments of CcmI have distinct functions during cytochrome c biogenesis in Rhodobacter capsulatus,” Journal of Bacteriology, vol. 189, no. 3, pp. 789–800, 2007.
[103]  D. Han, K. Kim, J. Oh, J. Park, and Y. Kim, “TPR domain of NrfG mediates complex formation between heme lyase and formate-dependent nitrite reductase in Escherichia coli O157:H7,” Proteins, vol. 70, no. 3, pp. 900–914, 2008.
[104]  D. J. Eaves, J. Grove, W. Staudenmann et al., “Involvement of products of the nrfEFG genes in the covalent attachment of haem c to a novel cysteine-lysine motif in the cytochrome c552 nitrite reductase from Escherichia coli,” Molecular Microbiology, vol. 28, no. 1, pp. 205–216, 1998.
[105]  J. Nilsson, B. Persson, and G. Von Heijne, “Consensus predictions of membrane protein topology,” FEBS Letters, vol. 486, no. 3, pp. 267–269, 2000.
[106]  E. di Silvio, A. di Matteo, F. Malatesta, and C. Travaglini-Allocatelli, “Recognition and binding of apocytochrome c to P. aeruginosa CcmI, a component of cytochrome c maturation machinery,” Biochim Biophys Acta, vol. 1834, no. 8, pp. 1554–1561, 2013.
[107]  N. Zeytuni and R. Zarivach, “Structural and functional discussion of the tetra-trico-peptide repeat, a protein interaction module,” Structure, vol. 20, no. 3, pp. 397–405, 2012.
[108]  C. Sanders, S. Turkarslan, D.-W. Lee, O. Onder, R. G. Kranz, and F. Daldal, “The cytochrome c maturation components CcmF, CcmH, and CcmI form a membrane-integral multisubunit heme ligation complex,” Journal of Biological Chemistry, vol. 283, no. 44, pp. 29715–29722, 2008.
[109]  A. F. Verissimo, M. A. Mohtar, and F. Daldal, “The heme chaperone ApoCcmE forms a ternary complex with CcmI and apocytochrome c,” The Journal of Biological Chemistry, vol. 288, no. 9, pp. 6272–6283, 2013.
[110]  P. D. Barker, J. C. Ferrer, M. Mylrajan et al., “Transmutation of a heme protein,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 14, pp. 6542–6546, 1993.
[111]  J. Simon and L. Hederstedt, “Composition and function of cytochrome c biogenesis system II,” The FEBS Journal, vol. 278, no. 22, pp. 4179–4188, 2011.
[112]  T. R. H. M. Kouwen and J. M. van Dijl, “Interchangeable modules in bacterial thiol-disulfide exchange pathways,” Trends in Microbiology, vol. 17, no. 1, pp. 6–12, 2009.
[113]  A. Crow, A. Lewin, O. Hecht et al., “Crystal structure and biophysical properties of Bacillus subtilis BdbD. An oxidizing thiol:disulfide oxidoreductase containing a novel metal site,” Journal of Biological Chemistry, vol. 284, no. 35, pp. 23719–23733, 2009.
[114]  M. C. M?ller and L. Hederstedt, “Extracytoplasmic processes impaired by inactivation of trxA (thioredoxin gene) in Bacillus subtilis,” Journal of Bacteriology, vol. 190, no. 13, pp. 4660–4665, 2008.
[115]  A. Lewin, A. Crow, A. Oubrie, and N. E. Le Brun, “Molecular basis for specificity of the extracytoplasmic thioredoxin ResA,” Journal of Biological Chemistry, vol. 281, no. 46, pp. 35467–35477, 2006.
[116]  C. L. Colbert, Q. Wu, P. J. A. Erbel, K. H. Gardner, and J. Deisenhofer, “Mechanism of substrate specificity in Bacillus subtilis ResA, a thioredoxin-like protein involved in cytochrome c maturation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 12, pp. 4410–4415, 2006.
[117]  U. Ahuja, P. Kjelgaard, B. L. Schulz, L. Thony-Meyer, and L. Hederstedt, “Haem-delivery proteins in cytochrome c maturation system II,” Molecular Microbiology, vol. 73, no. 6, pp. 1058–1071, 2009.
[118]  M. L. D. Page, P. P. Hamel, S. T. Gabilly et al., “A homolog of prokaryotic thiol disulfide transporter CcdA is required for the assembly of the cytochrome b6f complex in Arabidopsis chloroplasts,” Journal of Biological Chemistry, vol. 279, no. 31, pp. 32474–32482, 2004.
[119]  A. Rozhkova, C. U. Stirnimann, P. Frei et al., “Structural basis and kinetics of inter- and intramolecular disulfide exchange in the redox catalyst DsbD,” The EMBO Journal, vol. 23, no. 8, pp. 1709–1719, 2004.
[120]  T. Schi?tt, M. Throne-Holst, and L. Hederstedt, “Bacillus subtilis CcdA-defective mutants are blocked in a late step of cytochrome C biogenesis,” Journal of Bacteriology, vol. 179, no. 14, pp. 4523–4529, 1997.
[121]  R. E. Feissner, C. S. Beckett, J. A. Loughman, and R. G. Kranz, “Mutations in cytochrome assembly and periplasmic redox pathways in Bordetella pertussis,” Journal of Bacteriology, vol. 187, no. 12, pp. 3941–3949, 2005.
[122]  L. S. Erlendsson, M. M?ller, and L. Hederstedt, “Bacillus subtilis StoA is a thiol-disulfide oxidoreductase important for spore cortex synthesis,” Journal of Bacteriology, vol. 186, no. 18, pp. 6230–6238, 2004.
[123]  L. S. Erlendsson, R. M. Acheson, L. Hederstedt, and N. E. Le Brun, “Bacillus subtilis ResA is a thiol-disulfide oxidoreductase involved in cytochrome c synthesis,” Journal of Biological Chemistry, vol. 278, no. 20, pp. 17852–17858, 2003.
[124]  L. S. Erlendsson and L. Hederstedt, “Mutations in the thiol-disulfide oxidoreductases BdbC and BdbD can suppress cytochrome c deficiency of CcdA-defective Bacillus subtilis cells,” Journal of Bacteriology, vol. 184, no. 5, pp. 1423–1429, 2002.
[125]  M. E. Dumont, J. F. Ernst, D. M. Hampsey, and F. Sherman, “Identification and sequence of the gene encoding cytochrome c heme lyase in the yeast Saccharomyces cerevisiae,” The EMBO Journal, vol. 6, no. 1, pp. 235–241, 1987.
[126]  M. E. Dumont, J. F. Ernst, and F. Sherman, “Coupling of heme attachment to import of cytochrome c into yeast mitochondria. Studies with heme lyase-deficient mitochondria and altered apocytochromes c,” Journal of Biological Chemistry, vol. 263, no. 31, pp. 15928–15937, 1988.
[127]  B. San Francisco, E. C. Bretsnyder, and R. G. Kranz, “Human mitochondrial holocytochrome c synthase's heme binding, maturation determinants, and complex formation with cytochrome c,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 9, pp. E788–E797, 2012.
[128]  L. Schaefer, A. Ballabio, and H. Y. Zoghbi, “Cloning and characterization of a putative human holocytochrome c-type synthetase gene (HCCS) isolated from the critical region for microphthalmia with linear skin defects (MLS),” Genomics, vol. 34, no. 2, pp. 166–172, 1996.
[129]  S. K. Prakash, T. A. Cormier, A. E. McCall et al., “Loss of holocytochrome c-type synthetase causes the male lethality of X-linked dominant microphthalmia with linear skin defects (MLS) syndrome,” Human Molecular Genetics, vol. 11, no. 25, pp. 3237–3248, 2002.
[130]  I. Wimplinger, M. Morleo, G. Rosenberger et al., “Mutations of the mitochondrial holocytochrome c-type synthase in X-linked dominant microphthalmia with linear skin defects syndrome,” The American Journal of Human Genetics, vol. 79, no. 5, pp. 878–889, 2006.
[131]  S. Kiryu-Seo, K. Gamo, T. Tachibana, K. Tanaka, and H. Kiyama, “Unique anti-apoptotic activity of EAAC1 in injured motor neurons,” The EMBO Journal, vol. 25, no. 14, pp. 3411–3421, 2006.
[132]  R. Lill, R. A. Stuart, M. E. Drygas, F. E. Nargang, and W. Neupert, “Import of cytochrome c heme lyase into mitochondria: a novel pathway into the intermembrane space,” The EMBO Journal, vol. 11, no. 2, pp. 449–456, 1992.
[133]  H. Steiner, A. Zollner, A. Haid, W. Neupert, and R. Lill, “Biogenesis of mitochondrial heme lyases in yeast. Import and folding in the intermembrane space,” Journal of Biological Chemistry, vol. 270, no. 39, pp. 22842–22849, 1995.
[134]  A. Zollner, G. Rodel, and A. Haid, “Molecular cloning and characterization of the Saccharomyces cerevisiae CYT2 gene encoding cytochrome-c1-heme lyase,” European Journal of Biochemistry, vol. 207, no. 3, pp. 1093–1100, 1992.
[135]  V. Corvest, D. A. Murrey, D. G. Bernard, D. B. Knaff, B. Guiard, and P. P. Hamel, “c-Type cytochrome assembly in Saccharomyces cerevisiae: a key residue for apocytochrome c1/lyase interaction,” Genetics, vol. 186, no. 2, pp. 561–571, 2010.
[136]  V. Corvest, D. A. Murrey, M. Hirasawa, D. B. Knaff, B. Guiard, and P. P. Hamel, “The flavoprotein Cyc2p, a mitochondrial cytochrome c assembly factor, is a NAD(P)H-dependent haem reductase,” Molecular Microbiology, vol. 83, no. 5, pp. 968–980, 2012.
[137]  D. G. Bernard, S. Quevillon-Cheruel, S. Merchant, B. Guiard, and P. P. Hamel, “Cyc2p, a membrane-bound flavoprotein involved in the maturation of mitochondrial c-type cytochromes,” Journal of Biological Chemistry, vol. 280, no. 48, pp. 39852–39859, 2005.
[138]  J. G. Kleingardner and K. L. Bren, “Comparing substrate specificity between cytochrome c maturation and cytochrome c heme lyase systems for cytochrome c biogenesis,” Metallomics, vol. 3, no. 4, pp. 396–403, 2011.
[139]  C. Travaglini-Allocatelli, S. Gianni, V. Morea, A. Tramontano, T. Soulimane, and M. Brunori, “Exploring the cytochrome c folding mechanism: cytochrome c552 from Thermus thermophilus folds through an on-pathway intermediate,” Journal of Biological Chemistry, vol. 278, no. 42, pp. 41136–41140, 2003.
[140]  L. Zhang and L. Guarente, “Heme binds to a short sequence that serves a regulatory function in diverse proteins,” The EMBO Journal, vol. 14, no. 2, pp. 313–320, 1995.
[141]  S. Hira, T. Tomita, T. Matsui, K. Igarashi, and M. Ikeda-Saito, “Bach1, a heme-dependent transcription factor, reveals presence of multiple heme binding sites with distinct coordination structure,” IUBMB Life, vol. 59, no. 8-9, pp. 542–551, 2007.
[142]  T. K. Kühl, A. Wi?brock, N. Goradia et al., “Analysis of Fe(III) heme binding to cysteine-containing heme-regulatory motifs in proteins,” ACS Chemical Biology, vol. 8, no. 8, pp. 1785–1793, 2013.
[143]  R. L. Moore, J. M. Stevens, and S. J. Ferguson, “Mitochondrial cytochrome c synthase: CP motifs are not necessary for heme attachment to apocytochrome c,” FEBS Letters, vol. 585, no. 21, pp. 3415–3419, 2011.
[144]  S. Gianni, M. Brunori, and C. Travaglini-Allocatelli, “Refolding kinetics of cytochrome c551 reveals a mechanistic difference between urea and guanidine,” Protein Science, vol. 10, no. 8, pp. 1685–1688, 2001.
[145]  S. Gianni, C. Travaglini-Allocatelli, F. Cutruzzolà, M. Brunori, M. C. R. Shastry, and H. Roder, “Parallel pathways in cytochrome c551 folding,” Journal of Molecular Biology, vol. 330, no. 5, pp. 1145–1152, 2003.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133