The Canadian Supercritical-Water-Cooled Reactor (SCWR) is a vertical pressure tube reactor cooled with supercritical light water and moderated with heavy water. For normal operation, the local conditions of the coolant (density and temperature) and fuel (temperature) vary substantially along the channel. This means that to simulate adequately the behavior of the core under operating conditions or for anticipated accident scenario, expensive 3D transport calculations for a complete fuel channel are required. Here, we propose a simulation strategy that takes into account axial variations of the local conditions and avoids 3D transport calculations. This strategy consists in replacing the 3D simulation by a series of isolated 2D calculations followed by a single 1D simulation. It is shown that this strategy is efficient because the axial coupling along the fuel channel is relatively weak. In addition, the neutronic properties of a channel with axial reflector can be modeled using a simplified 3D transport calculation. 1. Introduction The Canadian Supercritical-Water-Cooled Reactor (SCWR) is a pressure-tube type generation-IV reactor [1] based on CANada Deuterium Uranium (CANDU) reactors [2]. The preliminary concept uses a calandria vessel containing the low-pressure moderator and the five meters long fuel channels [3]. This concept uses off-power batch refueling, and to simplify the fuelling process, the reactor core is oriented vertically. Another feature of this concept is that the coolant is forced vertically downwards; that is, the coolant enters the fuel channels at the top and exits at the bottom of the core. According to the pressure-temperature phase diagram for water, most of the current reactors operate in the liquid phase or on the saturation line. However, the main characteristic of the Canadian SCWR is that the coolant (light water) operates at pseudocritical and supercritical conditions, that is, at pressures and temperatures above the critical point of water (22.064?MPa and 373.95°C). The preliminary concept has a pressure of 25?MPa, a reactor inlet temperature of 350°C and a reactor outlet temperature of 625°C. Figure 1 shows the expected coolant conditions along a fuel channel. Figure 1: Expected coolant conditions along a Canadian SCWR fuel channel. Light water has an impact on neutron slowing down and on neutron absorption. The importance of this impact depends on the temperature and on the density of this water [4]. The effect of the large variation of the coolant conditions along a fuel channel on the global neutronic properties should
References
[1]
“U.S. DOE Nuclear Energy Research Advisory Committee and the Generation IV International Forum, A technology roadmap for Generation IV Nuclear Energy Systems, GenIV International Forum,” 2002, http://www.gen-4.org/Technology/roadmap.htm.
[2]
D. F. Torgerson, B. A. Shalaby, and S. Pang, “CANDU technology for Generation III+ and IV reactors,” Nuclear Engineering and Design, vol. 236, no. 14–16, pp. 1565–1572, 2006.
[3]
L. K. H. Leung, “Developing the Canadian SCWR concept for addressing GIF technology goals,” in Proceedings of the 3rd China-Canada Joint Workshop on Supercritical-Water-Cooled Reactors (CCSC '12), Shanxi, China, April 2012.
[4]
P. G. Boczar, W. Shen, J. Pencer, B. Hyland, P. S. W. Chan, and R. G. Dworschak, “Reactor physics studies for a pressure tube supercritical water reactor (PT-SCWR),” in Proceedings of the 2nd Canada-China Joint Workshop on Supercritical Water-Cooled Reactors (CCSC '10), Toronto, Ontario, Canada, April 2010.
[5]
J. Shan, W. Chen, B. W. Rhee, and L. K. H. Leung, “Coupled neutronics/thermal-hydraulics analysis of CANDU-SCWR fuel channel,” Annals of Nuclear Energy, vol. 37, no. 1, pp. 58–65, 2010.
[6]
P. Yang, L. Cao, H. Wu, and C. Wang, “Core design study on CANDU-SCWR with 3D neutronics/thermal-hydraulics coupling,” Nuclear Engineering and Design, vol. 241, no. 12, pp. 4714–4719, 2011.
[7]
D. Altiparmakov, “New capabilities of the lattice code WIMS-AECL,” in Proceedings of the International Conference on the Physics of Reactors (PHYSOR '08), Interlaken, Switzerland, September 2008.
[8]
G. Marleau, R. Roy, and A. Hébert, “A user guide for DRAGON 3.06,” Tech. Rep. IGE-174 Rev. 8, Institute of Nuclear Engineering, école Polytechnique de Montréal, Montréal, Québec, Canada, 2009.
[9]
J. Lepp?nen, PSG2/SERPENT - A Continuous-Energy Monte Carlo Reactor Physics Burnup Calculation Code, VTT Technical Research Centre of Finland, Espoo, Finland, 2011.
[10]
C. K. Chow and H. F. Khartabil, “Conceptual fuel channel designs for CANDU-SCWR,” Nuclear Engineering and Technology, vol. 40, no. 2, pp. 139–146, 2008.
[11]
M. H. McDonald, B. Hyland, H. Hamilton et al., “Pre-conceptual fuel design concepts for the Canadian super critical water-cooled reactor,” in Proceedings of the 5th International Symposium on Supercritical Water-Cooled Reactors (ISSCWR-5), Vancouver, British Columbia, Canada, March 2011.
[12]
M. Magill, J. Pencer, R. Pratt, W. Young, G. W. R. Edwards, and B. Hyland, “Thorium fuel cycles in the CANDU supercritical water reactor,” in Proceedings of the 5th International Symposium on Supercritical Water-Cooled Reactors (ISSCWR-5), Vancouver, British Columbia, Canada, March 2011.
[13]
W. Shen, “Assessment of the applicability of the traditional neutron-diffusion core-analysis method for the analysis of Super CriticalWater Reactor (SCWR),” in Proceedings of the Advances in Reactor Physics-Linking Research, Industry and Education (PHYSOR '12), Knoxville, Tenn, USA, 2012.
[14]
X. Wang and J. Pencer, “Assessment of reactor core simulations using DONJON for a 2-dimensional SCWR Benchmark Core,” in Proceedings of the 20th International Conference on Nuclear Engineering (ICONE-20), Anaheim, Calif, USA, July-August 2012.
[15]
G. Harrisson and G. Marleau, “2-D and 3-D evaluation of neutronic properties along a Canadian SCWR fuel channel,” in Proceedings of the 3rd China-Canada Joint Workshop on Supercritical-Water-Cooled Reactors (CCSC '12), Shaanxi, China, April 2012.
[16]
M. Varvayanni, P. Savva, and N. Catsaros, “Aspects of cell calculations in deterministic reactor core analysis,” Annals of Nuclear Energy, vol. 38, no. 2-3, pp. 185–193, 2011.
[17]
E. Fridman and J. Lepp?nen, “On the use of the Serpent Monte Carlo code for few-group cross section generation,” Annals of Nuclear Energy, vol. 38, no. 6, pp. 1399–1405, 2011.
[18]
M. Blaise, étude de l'interface coeur-réflecteur Application au calcul du réflecteur lourd [Ph.D. thesis], Université Paris XI Orsay, Paris, France, 1993.