全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Uncertainty Analysis of Light Water Reactor Fuel Lattices

DOI: 10.1155/2013/437409

Full-Text   Cite this paper   Add to My Lib

Abstract:

The study explored the calculation of uncertainty based on available cross-section covariance data and computational tool on fuel lattice levels, which included pin cell and the fuel assembly models. Uncertainty variations due to temperatures changes and different fuel compositions are the main focus of this analysis. Selected assemblies and unit pin cells were analyzed according to the OECD LWR UAM benchmark specifications. Criticality and uncertainty analysis were performed using TSUNAMI-2D sequence in SCALE 6.1. It was found that uncertainties increase with increasing temperature, while decreases. This increase in the uncertainty is due to the increase in sensitivity of the largest contributing reaction of uncertainty, namely, the neutron capture reaction 238U(n, γ) due to the Doppler broadening. In addition, three types (UOX, MOX, and UOX-Gd2O3) of fuel material compositions were analyzed. A remarkable increase in uncertainty in was observed for the case of MOX fuel. The increase in uncertainty of in MOX fuel was nearly twice the corresponding value in UOX fuel. The neutron-nuclide reaction of 238U, mainly inelastic scattering (n, n′), contributed the most to the uncertainties in the MOX fuel, shifting the neutron spectrum to higher energy compared to the UOX fuel. 1. Introduction The demand for the best estimate calculations in nuclear reactor core modeling and design has increased in recent years. Uncertainty analysis has been highlighted as an important part of the design and safety analysis of modern nuclear reactors. The modeling aspects of uncertainty analysis and sensitivity analysis are to be further developed and validated on scientific grounds in support of their performance. The Organization for Economic Cooperation and Development (OECD)/Nuclear Energy Agency (NEA) initiated the Benchmark for Uncertainty Analysis in Modeling, Design, Operation, and Safety Analysis of Light Water Reactor (OECD LWR UAM benchmark). The general objective of the benchmark is to propagate the uncertainty through complex coupled multiphysics and multiscale simulations. The benchmark is divided into three phases with Phase I highlighting the uncertainty propagation in neutronics calculations, while Phases II and III are focused on uncertainty analysis of reactor core and reactor system, respectively. In Phase I of the OECD LWR UAM benchmark, the exercises are divided into three parts: cell physics (Exercise I), lattice physics (Exercise II), and core physics (Exercise III) [1]. This paper will discuss Exercises I and II. 2. Uncertainty Calculations In general,

References

[1]  “OECD/NEA benchmark for Uncertainty Analysis in Modelling (UAM) for design, operation and safety analysis of LWRs,” in Specification and Support Data For the Neutronics Cases (Phase I), vol. 1, Version 2. 0. NEA/NSC/DOC(2012), 2012.
[2]  D. Cacuci, Sensitivity and Uncertainty Analysis: Theory, vol. 1, Chapman & Hall/CRC, 2003.
[3]  “SCALE: a comprehensive modeling and simulation suite for nuclear safety analysis and design,” ORNL/TM-2005/39, Version 6. 1, Oak Ridge National Laboratory, Oak Ridge, Tenn, USA, 2011.
[4]  S. Kamerow, C. Arenas Moreno, and K. Ivanov, “Uncertainty analysis of light water reactor unit fuel pin cells,” in Proceedings of the International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C '11), Rio de Janeiro, Brazil, May 2011.
[5]  M. Avramova, C. Arenas Moreno, and K. Ivanov, “Extension of BEPU methods to sub-channel thermal-hydraulics and to coupled three-dimensional neutronics/thermal-hydraulics codes,” in Proceedings of The OECD/CSNI Workshop, Barcelona, Spain, November 2011.
[6]  J. Duderstadt and L. Hamilton, Nuclear Reactor Analysis, John Wiley & Sons, New York, NY, USA, 1976.
[7]  B. T. Rearden, M. Williams, M. Jessee, D. Mueller, and D. Wiarda, “Sensitivity and uncertainty analysis capabilities and data in SCALE,” Nuclear Technology, vol. 174, no. 2, pp. 236–288, 2011.
[8]  M. Klein, L. Gallner, B. Krzykacz-Hausmann, A. Pautz, and W. Zwermann, “Influence of nuclear data uncertainties on reactor core calculations,” Kerntechnik, vol. 76, no. 3, pp. 174–178, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133