全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Design Concept of Advanced Sodium-Cooled Fast Reactor and Related R&D in Korea

DOI: 10.1155/2013/290362

Full-Text   Cite this paper   Add to My Lib

Abstract:

Korea imports about 97% of its energy resources due to a lack of available energy resources. In this status, the role of nuclear power in electricity generation is expected to become more important in future years. In particular, a fast reactor system is one of the most promising reactor types for electricity generation, because it can utilize efficiently uranium resources and reduce radioactive waste. Acknowledging the importance of a fast reactor in a future energy policy, the long-term advanced SFR development plan was authorized by KAEC in 2008 and updated in 2011 which will be carried out toward the construction of an advanced SFR prototype plant by 2028. Based upon the experiences gained during the development of the conceptual designs for KALIMER, KAERI recently developed advanced sodium-cooled fast reactor (SFR) design concepts of TRU burner that can better meet the generation IV technology goals. The current status of nuclear power and SFR design technology development program in Korea will be discussed. The developments of design concepts including core, fuel, fluid system, mechanical structure, and safety evaluation have been performed. In addition, the advanced SFR technologies necessary for its commercialization and the basic key technologies have been developed including a large-scale sodium thermal-hydraulic test facility, super-critical Brayton cycle system, under-sodium viewing techniques, metal fuel development, and developments of codes, and validations are described as R&D activities. 1. Introduction In Korea, electricity demand has increased by about eleven times since 1980 with an average annual growth rate of 8.7% mainly due to economic growth. The anticipated average annual growth rate is estimated to be 2.2% during the period of 2010 to 2024, as shown in Figure 1 [1]. However, the available energy resources are extremely limited in Korea: no domestic crude oil, little natural gas, and limited sites for hydro power. Consequently, about 97% of energy resources come from abroad. Nuclear power plants currently generate about 40% of the total electricity, and the role of nuclear power plants in electricity generation in Korea is expected to become more important in the years to come due to Korea’s lack of natural resources. The significance of nuclear power will become even greater, considering its practical potential in coping with the emission control of green-house gases. This heavy dependence on nuclear power eventually raise the issues of an efficient utilization of uranium resources, which Korea presently imports from abroad,

References

[1]  “The 5th basic plan for long term,” Electricity Supply and Demand (2010–2024) 2010-490, Ministry of Knowledge Economy, 2010.
[2]  D. H. Hahn, “Status of the fast reactor technology development program in Korea,” in Proceedings of the 40th Technical Working Group on Fast Reactors Meeting (TWG-FR '07), Tsuruga, Japan, May 2007.
[3]  D. Hahn, et al., “KALIMER-600 conceptual design report,” KAERI/TR-3381/2007, Korea Atomic Energy Research Institute, Daejeon, Korea, 2007.
[4]  H. Song, S. J. Kim, H. Y. Jeong, and Y. I. Kim, “Design studies on a large-scale sodium-cooled tru burner,” in Proceedings of the International Conference on Advances in Nuclear Power Plants (ICAPP '08), pp. 450–457, June 2008.
[5]  IAEA, Fast Reactor Database 2006 Update, IAEA-TECDOC-1531, 2006.
[6]  D. E. Kim, M. H. Kim, J. E. Cha, and S. O. Kim, “Numerical investigation on thermal-hydraulic performance of new printed circuit heat exchanger model,” Nuclear Engineering and Design, vol. 238, no. 12, pp. 3269–3276, 2008.
[7]  J. E. Cha, et al., “Report on the design concepts of Na/CO2 heat exchangers,” Gen IV International Forum Report SFR/CDBOP/2011/015, 2011.
[8]  J.-H. Eoh, H. C. No, Y. H. Yoo, and S. O. Kim, “Sodium-CO2 interaction in a supercritical CO2 power conversion system coupled with a sodium fast reactor,” Nuclear Technology, vol. 173, no. 2, pp. 99–114, 2011.
[9]  J. H. Eoh, H. C. No, Y. H. Yoo, J. Y. Jeong, J. M. Kim, and S. O. Kim, “Wastage and self-plugging by a potential CO2 ingress in a supercritical CO2 power conversion system of an SFR,” Journal of Nuclear Science and Technology, vol. 47, no. 11, pp. 1023–1036, 2010.
[10]  Y. I. Chang, “Technical rationale for metal fuel in fast reactor,” Nuclear Engineering and Technology, vol. 39, no. 3, 2007.
[11]  C. L. Trybus, “Injection casting of U-Zr-Mn, surrogate alloy for U-Pu-Zr-Am-Np,” Journal of Nuclear Materials, vol. 224, p. 305, 1995.
[12]  C. T. Lee, et al., “Casting technology development for SFR metallic fuel,” in Proceedings of Global-2009, Paris, France, September 2009.
[13]  R. E. Macfarlane, “TRANSX 2: a code for interfacing MATXS cross-section libraries to nuclear transport codes,” LA-12312-MS, 1992.
[14]  R. E. Alcouffe, et al., “DANTSYS: a diffusion accelerated neutral particle transport code system,” LA-12969-M, 1995.
[15]  B. J. Toppel, “A user's guide for the REBUS-3 fuel cycle analysis capability,” ANL-83-2, 1983.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133