全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Nonlinear Adaptive Dynamic Output-Feedback Power-Level Control of Nuclear Heating Reactors

DOI: 10.1155/2013/794167

Full-Text   Cite this paper   Add to My Lib

Abstract:

Due to the high safety performance of small nuclear reactors, there is a promising future for small reactors. Nuclear heating reactor (NHR) is a small reactor that has many advanced safety features such as the integrated arrangement, natural circulation at any power levels, self-pressurization, hydraulic control rod driving, and passive residual heating removing and can be applied to the fields of district heating, seawater desalination, and electricity production. Since the NHR dynamics has strong nonlinearity and uncertainty, it is meaningful to develop the nonlinear adaptive power-level control technique. From the idea of physically based control design method, a novel nonlinear adaptive power-level control is given for the NHR in this paper. It is theoretically proved that this newly built controller does not only provide globally asymptotic closed-loop stability but is also adaptive to the system uncertainty. Numerical simulation results show the feasibility of this controller and the relationship between the performance and controller parameters. 1. Introduction Due to the serious climate and environment problems such as global warming that caused by those greenhouse gases emitted from burning fossil fuels, it is significant for people to develop clean energy. Nuclear energy is one of the most rapidly developing clean energy, which gives the current rebirth of nuclear energy industry. After the severe Fukushima nuclear accident, much more attention has to be drawn on safety issues of nuclear plants. In contrast to those large nuclear reactors, small reactors usually has low power density which leads to higher safety performance and can be built near big cities for district heating, seawater desalination, and electricity production. Nuclear heating reactor (NHR) is a kind of small light water reactor, and the design of the NHR in China started since early 1980s. The first NHR of China, that is, the 5?MWth test nuclear heating reactor (NHR-5) began to be built in the Institute of Nuclear and New Energy Technology (INET) of Tsinghua University in March 1986 and reached its full power operation on December 16, 1989 [1–4]. Based on NHR-5, INET also designed the 200?MWth nuclear heating reactor NHR-200 which inherits many advanced safety characteristics from NHR-5 such as integrated arrangement, natural circulation at any operating power levels, self-pressurized performance, hydraulic control rod driver, and passive residual heat removing [5]. Both structure and cross-section of the NHR-200 are shown in Figure 1. As an improvement of the NHR-5, the

References

[1]  W. Zheng, D. Wang, J. Lin, D. Dong, C. Ma, and Y. Wu, “Nuclear heating reactor, a safe, clean and economic energy source,” in Potential of Small Nuclear Reactors for Future Clean and Safe Energy Source, H. Sekimoto, Ed., pp. 359–366, Elsevier, New York, NY, USA, 1992.
[2]  D. Wang, C. Ma, D. Dong, and J. Lin, “Chinese nuclear heating test reactor and demonstration plant,” Nuclear Engineering and Design, vol. 136, no. 1-2, pp. 91–98, 1992.
[3]  D. Wang, D. Zhang, D. Dong et al., “Experimental study and operation experiences of the 5?MW nuclear heating reactor,” Nuclear Engineering and Design, vol. 143, no. 1, pp. 9–18, 1993.
[4]  D. Wang, “The design characteristics and construction experiences of the 5?MWt nuclear heating reactor,” Nuclear Engineering and Design, vol. 143, no. 1, pp. 19–24, 1993.
[5]  D. Wang, Z. Gao, and W. Zheng, “Technical design features and safety analysis of the 200?MWt nuclear heating reactor,” Nuclear Engineering and Design, vol. 143, no. 1, pp. 1–7, 1993.
[6]  D. Wang, D. Dong, W. Zheng, D. Zhang, and L. Wang, “The 200?MW nuclear heating reactor and its possible application in seawater desalination,” Desalination, vol. 99, no. 2-3, pp. 383–399, 1994.
[7]  S. Wu and W. Zheng, “Coupling of nuclear heating reactor with desalination process,” Desalination, vol. 142, no. 2, pp. 187–193, 2002.
[8]  S. Wu and Z. Zhang, “An approach to improve the economy of desalination plants with a nuclear heating reactor by coupling with hybrid technologies,” Desalination, vol. 155, no. 2, pp. 179–185, 2003.
[9]  R. M. Edwards, K. Y. Lee, and M. A. Schultz, “State feedback assisted classical control. An incremental approach to control modernization of existing and future nuclear reactors and power plants,” Nuclear Technology, vol. 92, no. 2, pp. 167–185, 1990.
[10]  A. Ben-Abdennour, R. M. Edwards, and K. Y. Lee, “LQR/LTR robust control of nuclear reactors with improved temperature performance,” IEEE Transactions on Nuclear Science, vol. 39, no. 6, pp. 2286–2294, 1992.
[11]  H. Arab-Alibeik and S. Setayeshi, “Improved temperature control of a PWR nuclear reactor using an LQG/LTR based controller,” IEEE Transactions on Nuclear Science, vol. 50, no. 2, pp. 211–218, 2003.
[12]  Y. B. Shtessel, “Sliding mode control of the space nuclear reactor system,” IEEE Transactions on Aerospace and Electronic Systems, vol. 34, no. 2, pp. 579–589, 1998.
[13]  Z. Dong, “Nonlinear state-feedback dissipation power level control for nuclear reactors,” IEEE Transactions on Nuclear Science, vol. 58, no. 1, pp. 241–257, 2011.
[14]  P. Kokotovi?, “The joy of feedback,” IEEE Control Systems, vol. 12, no. 3, pp. 7–17, 1992.
[15]  Z. Dong, J. Feng, X. Huang, and L. Zhang, “Dissipation-based high gain filter for monitoring nuclear reactors,” IEEE Transactions on Nuclear Science, vol. 57, no. 1, pp. 328–339, 2010.
[16]  Z. Dong, X. Huang, and L. Zhang, “Output-feedback load-following control of nuclear reactors based on a dissipative high gain filter,” Nuclear Engineering and Design, vol. 241, no. 12, pp. 4783–4793, 2011.
[17]  B. M. Maschke, R. Ortega, and A. J. van der Schaft, “Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation,” IEEE Transactions on Automatic Control, vol. 45, no. 8, pp. 1498–1502, 2000.
[18]  R. Ortega, A. van der Schaft, B. M. Maschke, and G. Escobar, “Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems,” Automatica, vol. 38, no. 4, pp. 585–596, 2002.
[19]  R. Ortega, A. van der Schaft, F. Casta?os, and A. Astolfi, “Control by interconnection and standard passivity-based control of port-Hamiltonian systems,” IEEE Transactions on Automatic Control, vol. 53, no. 11, pp. 2527–2542, 2008.
[20]  Z. Dong, “Self-stability analysis of MHTGRs: a shifted-ectropy based approach,” Nuclear Engineering and Design, vol. 248, pp. 137–148, 2012.
[21]  Z. Dong, “Physically-based power-level control for modular high temperature gas-cooled reactors,” IEEE Transactions on Nuclear Science, vol. 59, no. 5, pp. 2531–2548, 2012.
[22]  J. Fu, “Extended backstepping approach for a class of non-linear systems in generalised output feedback canonical form,” IET Control Theory and Applications, vol. 3, no. 8, pp. 1023–1032, 2009.
[23]  Z. J. Yang, Y. Fukushima, S. Kanae, and K. Wada, “Robust non-linear output-feedback control of a magnetic levitation system by K-filter approach,” IET Control Theory and Applications, vol. 3, no. 7, pp. 852–864, 2009.
[24]  W. MacKunis, Z. D. Wilcox, M. K. Kaiser, and W. E. Dixon, “Global adaptive output feedback tracking control of an unmanned aerial vehicle,” IEEE Transactions on Control Systems Technology, vol. 18, no. 6, pp. 1390–1397, 2010.
[25]  D. Xu and J. Huang, “Robust adaptive control of a class of nonlinear systems and its applications,” IEEE Transactions on Circuits and Systems I, vol. 57, no. 3, pp. 691–702, 2010.
[26]  B. Yao, C. Hu, L. Lu, and Q. Wang, “Adaptive robust precision motion control of a high-speed industrial gantry with cogging force compensations,” IEEE Transactions on Control Systems Technology, vol. 19, no. 5, pp. 1149–1159, 2011.
[27]  M. G. Park and N. Z. Cho, “Time-optimal control of nuclear reactor power with adaptive proportional-integral-feedforward gains,” IEEE Transactions on Nuclear Science, vol. 40, no. 3, pp. 266–270, 1993.
[28]  H. Arab-Alibeik and S. Setayeshi, “Adaptive control of a PWR core power using neural networks,” Annals of Nuclear Energy, vol. 32, no. 6, pp. 588–605, 2005.
[29]  Z. Dong, “Nonlinear adaptive power-level control for modular high temperature gas-cooled reactors,” IEEE Transactions on Nuclear Science, vol. 60, no. 2, pp. 1332–1345, 2013.
[30]  Z. Dong, X. Huang, J. Feng, and L. Zhang, “Dynamic model for control system design and simulation of a low temperature nuclear reactor,” Nuclear Engineering and Design, vol. 239, no. 10, pp. 2141–2151, 2009.
[31]  Z. Dong, X. Huang, and J. Feng, “Water-level control for the U-tube steam generator of nuclear power plants based on output feedback dissipation,” IEEE Transactions on Nuclear Science, vol. 56, no. 3, pp. 1600–1612, 2009.
[32]  J. Na, X. Ren, and D. Zheng, “Adaptive control for nonlinear pure-feedback systems with high-order sliding mode observer,” IEEE Transactions on Networks and Learning Systems, vol. 24, no. 3, pp. 370–382, 2013.
[33]  Y. J. Liu, S. Tong, and C. L. P. Chen, “Adaptive fuzzy control via observer design for uncertain nonlinear systems with unmodeled dynamics,” IEEE Transactions on Fuzzy Systems, vol. 21, no. 2, pp. 275–288, 2013.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133