Uranium silicide fuels proved over decades their exceptional qualification for the operation of higher flux material testing reactors with LEU elements. The application of such fuels as target materials, particularly for the large scale fission Mo-99 producers, offers an efficient and economical solution for the related facilities. The realization of such aim demands the introduction of a suitable dissolution process for the applied U3Si2 compound. Excellent results are achieved by the oxidizing dissolution of the fuel meat in hydrofluoric acid at room temperature. The resulting solution is directly behind added to an over stoichiometric amount of potassium hydroxide solution. Uranium and the bulk of fission products are precipitated together with the transuranium compounds. The filtrate contains the molybdenum and the soluble fission product species. It is further treated similar to the in-full scale proven process. The generated off gas stream is handled also as experienced before after passing through KOH washing solution. The generated alkaline fluoride containing waste solution is noncorrosive. Nevertheless fluoride can be selectively bonded as in soluble CaF2 by addition of a mixture of solid calcium hydroxide calcium carbonate to the sand cement mixture used for waste solidification. The generated elevated amounts of LEU remnants can be recycled and retargeted. The related technology permits the minimization of the generated fuel waste, saving environment, and improving processing economy. 1. Introduction Particularly for the large scale producers, the conversion of the production targets for fission Mo-99 presents a serious challenge for keeping economical conditions for operating their plants. The uranium enrichment dropping from ~90% to ~19.8% demands modifications on process operation to compensate for the resulting loss in output. Evaluations based on keeping the production process proven since decades unchanged and just increasing the amount of processed targets are not realistic in general. The dominant reasons are limitations on efficient irradiation positions in the available research reactors plus drastically increased processing and waste costs. The idea of maintaining the current production process [1–8] by increasing fuel densities of the targets exploiting the progress in target technology from actually ~1?gU/cm3 for highly enriched uranium (HEU) to approximately 2.6?gU/cm3 for low enriched uranium (LEU) targets can be classified as a compromise. Such compromise is appropriate for several small- and medium-scale facilities but not
References
[1]
C. J. Fallias, A. More de Westgaver, L. Heeren, J. M. Baugnet, J. M. Gandoflo, and W. Boeykens, “Production of radioisotopes with BR2 facilities,” in Proceedings of the BR-2 Reactor Meeting, INIS MF 4426, pp. 1–11, Mol, Belgium, 1978.
[2]
R. O. Marques, P. R. Cristini, H. Fernandez, and D. Marziale, “Operation and installation for fission for fission production in Argentina. Fission molybdenum for medical use,” in Proceedings of the Technical Committee Meeting Organized by the International Atomic Energy Agency, IAEA-TECDOC-515, pp. 23–33, Karlsruhe, Germany, October 1987.
[3]
J. Salacz, “Processing of irradiated for the production of , , and radioisotopes. Fission molybdenum for medical use,” in Proceedings of the Technical Committee Meeting Organized by the International Atomic Energy Agency, IAEA-TECDOC-515, pp. 149–154, Karlsruhe, Germany, October 1987.
[4]
A. A. Sameh and H. J. Ache, “Production techinques of fission molybdenum-99,” Radiochimica Acta, vol. 41, pp. 65–72, 1987.
[5]
A. Mushtaq, “Specifications and qualification of uranium/aluminum alloy plate target for the production of fission molybdenum-99,” Nuclear Engineering and Design, vol. 241, no. 1, pp. 163–167, 2011.
[6]
K. L. Ali, A. A. Khan, A. Mushtaq et al., “Development of low enriched uranium target plates by thermo-mechanical processing of UAl2-Al matrix for production of in Pakistan,” Nuclear Engineering and Design, vol. 255, pp. 77–85, 2013.
[7]
G. Ball, “Status update on the HEU/LEU conversion in South Africa,” in Proceedings of the NNSA 2nd Mo-99 Topical Meeting on Molybdenum-99 Technological Development, Chicago, Ill, USA, April 2013.
[8]
M. Druce, “Manufactoring Mo-99 from LEU for Australian market,” in Proceedings of the NNSA 2nd Mo-99 Topical Meeting on Molybdenum-99 Technological Development, Chicago, Ill, USA, April 2013.
[9]
G. F. Vandegrift, J. L. Snelgrove, S. Aase, M. M. Bretschner, and B. A. Buchholz, “Converting targets and process for fission-product from high to low enriched uranium,” IAEA TECODOC, 1997.
[10]
J. Jerden, J. Baily, L. Hafenrichter, and G. F. Vandegrift, “Full-scale testing of the ambient pressure, acid-dissolution front-end process for the current Mo-99 recovery process,” Chemical Science and Engineering. In press.
[11]
A. Guelis, G. Vandegrift, and S. Wiedmeyer, “Uranium anodic dissolution under slightly alkaline conditions,” ANL Progress Report, Argonne, 2012.
[12]
J. D. Kwok, G .F. Vandegrift, and J. E. Matos, “Processing of low-burnup LEU silicide targets,” in Processedings of the 1988 International Meeting on Reduced Enrichment for Research and Test Reactors, ANL/RERTR/TM-13, CONF-880221, pp. 434–442, San Diego, Calif, USA, 1993.
[13]
Cols, P. R. Cristini, and R. O. Marques, “Preliminary investigations on the use of uranium silicide targets for fission Mo-99 production,” in Proceedings of the 1994 International Meeting on Reduced Enrichment for Research and Test Reactors, ANL/RERTR/TM-20, Williamsburg, Va, USA, September 1994.
[14]
G. F. Vandegrift, A. V. Gelis, S. B. Aase, A. J. Bakel, E. Freiberg Y Koma, and C. Conner, “ANL progress in developing a target and process for converting CNEA Mo-99 production to low-enriched uranium,” in Proceedings of the 2002 International Meeting on Reduced Enrichment for Research and Test Reactors, San Carlos de Bariloche, Argentina, November 2002.
[15]
J. P. Durand, Y. Fanjas, and A. Tissier, “Development of higher-density fuel at CERCA status as of Oct.1992,” in Proceedings of the 1992 International Meeting on Reduced Enrichment for Research and Test Reactors-Status, Roskilde, Denmark, September-October 1992, Argonne National Laboratory Report ANL/RERTR/TM-19, CONF-9209266.
[16]
A. A. Sameh and A. Bertram-Berg, “HEU and LEU MTR fuel elements as target materials for the production of fission molybdenum,” in Proceedings of the 1992 International Meeting on Reduced Enrichment for Research and Test Reactors, Roskilde, Denmark, September-October 1992, Argonne National Laboratory Report.
[17]
J. P. Durand, J. C. Cottone, M. Mahe, and G. Ferraz, “LEU fuel development at CERCA-status as of October 1998,” in Proceedings of the 1998 International Meeting on Reduced Enrichment for Research and Test Reactors, Sao Paulo, Brazil, October 1998, Argonne National Laboratory Report.
[18]
A. A. Sameh, “Production of fission Mo-99 from LEU uranium silicide target materials,” in Proceedings of the 2000 Symposium on Isotope and Radiation Applications, Institute of Nuclear Energy Research, Lung-Tan, Taiwan, May 2000.
[19]
J. L. Snelgrove, Qualification Status of 6-GU/Cm3 U3Si2 Dispersion Targets for 99Mo Production, Argonne National Laboratory, 2011.
[20]
Workshop on Signatures of Medical and Industrial Isotope Production (WOSMIP '09), Friuli-Venezia Giulia, Italy, July 2009, PNNL-19294.
[21]
A. A. Sameh, “KIT Process operating at Petten-the Netherlands,” in Proceedings of the Workshop on Signatures of Medical and Industrial Isotope Production (WOSMIP '10), Friuli-Venezia Giulia, Italy, June 2010, PNNL-21052.
[22]
A. A. Sameh and A. Bertram-Berg, “Process for treating dissolution residues,” Patent DE4241955, US5419881 ,1995.
[23]
A. A. Sameh, “Processing and off gas handling of irradiated LEU uranium silicide,” in Proceedings of the Workshop on Signatures of Medical and Industrial Isotope Production (WOSMIP '11), Friuli-Venezia Giulia, Italy, June 2011.
[24]
A. A. Sameh and W. Leifeld, “Process for separation of molybdenum,” Patent DE4231955, USA 5.508.010, 1996.
[25]
A. A. Sameh, J. Hoogveldt, and J. Reinhardt, “Process for recovering molybdenum-99 from a matrix containing neutron irradiated fissionable materials and fission products,” Patent DE 2758783, 1994.
[26]
A. A. Sameh and J. Haag, “Process for the separation of large amounts of uranium from small amounts of radioactive fission products, which are present in basic, aqueous carbonate containing solutions,” Patent DE3428877, USA 4696768, 1987.
[27]
R. G. Wymer and B. L. Vondra, Light Water Reactor Fuel Cycle, CRC Press, Boca Raton, Fla, USA, 1981.
[28]
H.-J. Bleyl, D. Ertel, H. Goldacker, G. Petrich, J. Romer, and H. Schmieder, “Recent experimental findings on the way to the one-cycle Purex process,” Kerntechnik, vol. 55, no. 1, pp. 21–26, 1990.
[29]
R. Kr?bel and A. Maier, International Solvent Extraction Conference, Lyon, France, 1974.
[30]
H. Eschrich and W. Ochsenfeld, “Application of extraction chromatography to nuclear fuel reprocessing,” Separation Science and Technology, vol. 15, no. 4, pp. 697–732, 1980.
[31]
S. Nazare, G. Ondracek, and F. Thümler, “UAl3-Al als Dispersionsbrennstoff für H?chstflussreaktoren,” KFK, 1252, 1970.
[32]
S. Nazare, Private communication and advice on silicide preparation and targeting (1988–1990).