全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Schizophrenia as a Disorder of Social Communication

DOI: 10.1155/2012/920485

Full-Text   Cite this paper   Add to My Lib

Abstract:

Evidence is reviewed for the existence of a core system for moment-to-moment social communication that is based on the perception of dynamic gestures and other social perceptual processes in the temporal-parietal occipital junction (TPJ), including the posterior superior temporal sulcus (PSTS) and surrounding regions. Overactivation of these regions may produce the schizophrenic syndrome. The TPJ plays a key role in the perception and production of dynamic social, emotional, and attentional gestures for the self and others. These include dynamic gestures of the body, face, and eyes as well as audiovisual speech and prosody. Many negative symptoms are characterized by deficits in responding within these domains. Several properties of this system have been discovered through single neuron recording, brain stimulation, neuroimaging, and the study of neurological impairment. These properties map onto the schizophrenic syndrome. The representation of dynamic gestures is multimodal (auditory, visual, and tactile), matching the predominant hallucinatory categories in schizophrenia. Inherent in the perceptual signal of gesture representation is a computation of intention, agency, and anticipation or expectancy (for the self and others). The neurons are also tuned or biased to rapidly detect threat-related emotions. I review preliminary evidence that overactivation of this system can result in schizophrenia. 1. Introduction Is there a system for dynamic moment to moment social communication in the brain? Social perception has now been extensively studied in humans and nonhuman primates and is defined as follows: “…the initial states of evaluating the social communicative intentions of others by analysis of eye-gaze direction, facial expressions, body movements, and other types of biological motion.” [1]. Recent evidence suggests that such a system does exist and that abnormal activity in this system may produce the symptoms and cognitive deficits that comprise the syndrome of schizophrenia. A posterior system will be described whose activity may correspond to or underlie the perceptual experience of conversing and interacting with others. Until recently, communication has primarily been studied through language research. This line of research has focused mainly on the structure of the representation and the neural basis of language input (graphemes, phonemes), the internal lexical/semantic representation, and language output (writing and speech production) and has made significant progress in understanding language. 2. Communication Involves Not Only Language

References

[1]  T. Allison, A. Puce, and G. McCarthy, “Social perception from visual cues: role of the STS region,” Trends in Cognitive Sciences, vol. 4, no. 7, pp. 267–278, 2000.
[2]  J. Decety and C. Lamm, “The role of the right temporoparietal junction in social interaction: how low-level computational processes contribute to meta-cognition,” Neuroscientist, vol. 13, no. 6, pp. 580–593, 2007.
[3]  E. Redcay, “The superior temporal sulcus performs a common function for social and speech perception: implications for the emergence of autism,” Neuroscience and Biobehavioral Reviews, vol. 32, no. 1, pp. 123–142, 2008.
[4]  E. Redcay, D. Dodell-Feder, M. J. Pearrow et al., “Live face-to-face interaction during fMRI: a new tool for social cognitive neuroscience,” NeuroImage, vol. 50, no. 4, pp. 1639–1647, 2010.
[5]  C. G. Wible, A. P. Preus, and R. Hashimoto, “A cognitive neuroscience view of schizophrenic symptoms: abnormal activation of a system for social perception and communication,” Brain Imaging and Behavior, vol. 3, no. 1, pp. 85–110, 2009.
[6]  C. G. Wible, “Hippocampaltemporal-parietal junction interaction in the production of psychotic symptoms: a framework for understanding the schizophrenic syndrome,” In press.
[7]  J. Decety and J. Grezes, “The power of simulation: imagining one's own and other's behavior,” Brain Research, vol. 1079, no. 1, pp. 4–14, 2006.
[8]  J. Gottlieb, “From thought to action: the parietal cortex as a bridge between perception, action, and cognition,” Neuron, vol. 53, no. 1, pp. 9–16, 2007.
[9]  J. T. Klein, R. O. Deaner, and M. L. Platt, “Neural correlates of social target value in macaque parietal cortex,” Current Biology, vol. 18, no. 6, pp. 419–424, 2008.
[10]  K. G. Thompson and N. P. Bichot, “A visual salience map in the primate frontal eye field,” Progress in Brain Research, vol. 147, pp. 251–262, 2005.
[11]  T. Brandt, P. Bartenstein, A. Janek, and M. Dieterich, “Reciprocal inhibitory visual-vestibular interaction. Visual motion stimulation deactivates the parieto-insular vestibular cortex,” Brain, vol. 121, no. 9, pp. 1749–1758, 1998.
[12]  A. D. Craig, “How do you feel—now? The anterior insula and human awareness,” Nature Reviews Neuroscience, vol. 10, no. 1, pp. 59–70, 2009.
[13]  D. C. Javitt, “When doors of perception close: bottom-up models of disrupted cognition in schizophrenia,” Annual Review of Clinical Psychology, vol. 5, pp. 249–275, 2009.
[14]  M. Brune, M. Abdel-Hamid, C. Sonntag, C. Lehmkamper, and R. Langdon, “Linking social cognition with social interaction: non-verbal expressivity, social competence and “mentalising” in patients with schizophrenia spectrum disorders,” Behavioral and Brain Functions, vol. 5, article 6, 2009.
[15]  N. C. Andreasen, C. A. Calarge, and D. S. O'Leary, “Theory of mind and schizophrenia: a positron emission tomography study of medication-free patients,” Schizophrenia Bulletin, vol. 35, no. 5, p. 1030, 2009.
[16]  A. M. Kring, S. L. Kerr, D. A. Smith, and J. M. Neale, “Flat affect in schizophrenia does not reflect diminished subjective experience of emotion,” Journal of Abnormal Psychology, vol. 102, no. 4, pp. 507–517, 1993.
[17]  A. M. Kring and E. K. Moran, “Emotional response deficits in schizophrenia: insights from affective science,” Schizophrenia Bulletin, vol. 34, no. 5, pp. 819–834, 2008.
[18]  W. Penfield and P. Perot, “The brain's record of auditory and visual experience: a final summary and discussion,” Brain, vol. 86, no. 4, pp. 595–696, 1963.
[19]  O. Blanke, S. Ortigue, T. Landis, and M. Seeck, “Stimulating illusory own-body perceptions,” Nature, vol. 419, no. 6904, pp. 269–270, 2002.
[20]  S. Arzy, M. Seeck, S. Ortigue, L. Spinelli, and O. Blanke, “Induction of an illusory shadow person,” Nature, vol. 443, no. 7109, article 287, 2006.
[21]  P. Brugger, O. Blanke, M. Regard, D. T. Bradford, and T. Landis, “Polyopic heautoscopy: case report and review of the literature,” Cortex, vol. 42, no. 5, pp. 666–674, 2006.
[22]  R. Ishii, L. Canuet, M. Iwase et al., “Right parietal activation during delusional state in episodic interictal psychosis of epilepsy: a report of two cases,” Epilepsy and Behavior, vol. 9, no. 2, pp. 367–372, 2006.
[23]  S. H. Lee, W. Kim, Y. C. Chung et al., “A double blind study showing that two weeks of daily repetitive TMS over the left or right temporoparietal cortex reduces symptoms in patients with schizophrenia who are having treatment-refractory auditory hallucinations,” Neuroscience Letters, vol. 376, no. 3, pp. 177–181, 2005.
[24]  E. Poulet, J. Brunelin, B. Bediou et al., “Slow transcranial magnetic stimulation can rapidly reduce resistant auditory hallucinations in schizophrenia,” Biological Psychiatry, vol. 57, no. 2, pp. 188–191, 2005.
[25]  R. E. Hoffman, R. Gueorguieva, K. A. Hawkins et al., “Temporoparietal transcranial magnetic stimulation for auditory hallucinations: safety, efficacy and moderators in a fifty patient sample,” Biological Psychiatry, vol. 58, no. 2, pp. 97–104, 2005.
[26]  A. Vercammen, H. Knegtering, R. Bruggeman et al., “Effects of bilateral repetitive transcranial magnetic stimulation on treatment resistant auditory-verbal hallucinations in schizophrenia: a randomized controlled trial,” Schizophrenia Research, vol. 114, no. 1–3, pp. 172–179, 2009.
[27]  O. Rosenberg, Y. Roth, M. Kotler, A. Zangen, and P. Dannon, “Deep transcranial magnetic stimulation for the treatment of auditory hallucinations: a preliminary open-label study,” Annals of General Psychiatry, vol. 10, no. 1, article 3, 2011.
[28]  R. Jardri, B. Lucas, Y. Delevoye-Turrell et al., “An 11-year-old boy with drug-resistant schizophrenia treated with temporo-parietal rTMS,” Molecular Psychiatry, vol. 12, no. 4, article 320, 2007.
[29]  A. Caramazza, “On drawing inferences about the structure of normal cognitive systems from the analysis of patterns of impaired performance: the case for single-patient studies,” Brain and Cognition, vol. 5, no. 1, pp. 41–66, 1986.
[30]  D. Silbersweig and E. Stern, “Functional neuroimaging of hallucinations in schizophrenia: toward an integration of bottom-up and top-down approaches,” Molecular Psychiatry, vol. 1, no. 5, pp. 367–375, 1996.
[31]  J. Gauntlett-Gilbert and E. Kuipers, “Phenomenology of visual hallucinations in psychiatric conditions,” Journal of Nervous and Mental Disease, vol. 191, no. 3, pp. 203–205, 2003.
[32]  M. Startup and S. Startup, “On two kinds of delusion of reference,” Psychiatry Research, vol. 137, no. 1-2, pp. 87–92, 2005.
[33]  D. I. Perrett, D. Xiao, N. E. Barraclough, C. Keysers, and M. W. Oram, “Seeing the future: natural image sequences produce anticipatory neuronal activity and bias perceptual report,” Quarterly Journal of Experimental Psychology, vol. 62, no. 11, pp. 2081–2104, 2009.
[34]  T. Jellema, C. I. Baker, B. Wicker, and D. I. Perrett, “Neural representation for the perception of the intentionality of actions,” Brain and Cognition, vol. 44, no. 2, pp. 280–302, 2000.
[35]  J. P. Morris, K. A. Pelphrey, and G. McCarthy, “Perceived causality influences brain activity evoked by biological motion,” Social Neuroscience, vol. 3, no. 1, pp. 16–25, 2008.
[36]  D. I. Perrett, P. A. Smith, D. D. Potter et al., “Visual cells in the temporal cortex sensitive to face view and gaze direction,” Proceedings of the Royal Society B, vol. 223, pp. 293–317, 1985.
[37]  O. Blanke and S. Arzy, “The out-of-body experience: disturbed self-processing at the temporo-parietal junction,” Neuroscientist, vol. 11, no. 1, pp. 16–24, 2005.
[38]  L. Nummenmaa, L. Passamonti, J. Rowe, A. D. Engell, and A. J. Calder, “Connectivity analysis reveals a cortical network for eye gaze perception,” Cerebral Cortex, vol. 20, no. 8, pp. 1780–1787, 2010.
[39]  L. Young, D. Dodell-Feder, and R. Saxe, “What gets the attention of the temporo-parietal junction? An fMRI investigation of attention and theory of mind,” Neuropsychologia, vol. 48, no. 9, pp. 2658–2664, 2010.
[40]  R. Adolphs, H. Damasio, and D. Tranel, “Neural systems for recognition of emotional prosody. A 3-D lesion study,” Emotion, vol. 2, no. 1, pp. 23–51, 2002.
[41]  A. Puce and D. Perrett, “Electrophysiology and brain imaging of biological motion,” Philosophical Transactions of the Royal Society B, vol. 358, no. 1431, pp. 435–445, 2003.
[42]  K. A. Pelphrey, J. P. Morris, C. R. Michelich, T. Allison, and G. McCarthy, “Functional anatomy of biological motion perception in posterior temporal cortex: an fMRI study of eye, mouth and hand movements,” Cerebral Cortex, vol. 15, no. 12, pp. 1866–1876, 2005.
[43]  J. Billino, D. I. Braun, K. D. Bohm, F. Bremmer, and K. R. Gegenfurtner, “Cortical networks for motion processing: effects of focal brain lesions on perception of different motion types,” Neuropsychologia, vol. 47, no. 10, pp. 2133–2144, 2009.
[44]  E. D. Grossman, L. Battelli, and A. Pascual-Leone, “Repetitive TMS over posterior STS disrupts perception of biological motion,” Vision Research, vol. 45, no. 22, pp. 2847–2853, 2005.
[45]  C. Bruce, R. Desimone, and C. G. Gross, “Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque,” Journal of Neurophysiology, vol. 46, no. 2, pp. 369–384, 1981.
[46]  M. I. Gobbini and J. V. Haxby, “Neural systems for recognition of familiar faces,” Neuropsychologia, vol. 45, no. 1, pp. 32–41, 2007.
[47]  T. M. Wright, K. A. Pelphrey, T. Allison, M. J. McKeown, and G. McCarthy, “Polysensory interactions along lateral temporal regions evoked by audiovisual speech,” Cerebral Cortex, vol. 13, no. 10, pp. 1034–1043, 2003.
[48]  K. V. Kriegstein and A.-L. Giraud, “Distinct functional substrates along the right superior temporal sulcus for the processing of voices,” NeuroImage, vol. 22, no. 2, pp. 948–955, 2004.
[49]  N. E. Barraclough, D. Xiao, C. I. Baker, M. W. Oram, and D. I. Perrett, “Integration of visual and auditory information by superior temporal sulcus neurons responsive to the sight of actions,” Journal of Cognitive Neuroscience, vol. 17, no. 3, pp. 377–391, 2005.
[50]  M. S. Beauchamp, “Statistical criteria in fMRI studies of multisensory integration,” Neuroinformatics, vol. 3, no. 2, pp. 93–113, 2005.
[51]  M. S. Beauchamp, B. D. Argall, J. Bodurka, J. H. Duyn, and A. Martin, “Unraveling multisensory integration: patchy organization within human STS multisensory cortex,” Nature Neuroscience, vol. 7, no. 11, pp. 1190–1192, 2004.
[52]  M. Iacoboni, L. M. Koski, M. Brass et al., “Reafferent copies of imitated actions in the right superior temporal cortex,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 24, pp. 13995–13999, 2001.
[53]  A. A. Ghazanfar, C. Chandrasekaran, and N. K. Logothetis, “Interactions between the superior temporal sulcus and auditory cortex mediate dynamic face/voice integration in rhesus monkeys,” Journal of Neuroscience, vol. 28, pp. 4457–4469, 2008.
[54]  R. Saxe and A. Wexler, “Making sense of another mind: the role of the right temporo-parietal junction,” Neuropsychologia, vol. 43, no. 10, pp. 1391–1399, 2005.
[55]  J. Scholz, C. Triantafyllou, S. Whitfield-Gabrieli, E. N. Brown, and R. Saxe, “Distinct regions of right temporo-parietal junction are selective for theory of mind and exogenous attention,” PLoS ONE, vol. 4, no. 3, Article ID e4869, 2009.
[56]  C. D. Frith and U. Frith, “How we predict what other people are going to do,” Brain Research, vol. 1079, no. 1, pp. 36–46, 2006.
[57]  C. M. Bird, F. Castelli, O. Malik, U. Frith, and M. Husain, “The impact of extensive medial frontal lobe damage on “Theory of Mind” and cognition,” Brain, vol. 127, no. 4, pp. 914–928, 2004.
[58]  A. Baird, B. K. Dewar, H. Critchley, S. J. Gilbert, R. J. Dolan, and L. Cipolotti, “Cognitive functioning after medial frontal lobe damage including the anterior cingulate cortex: a preliminary investigation,” Brain and Cognition, vol. 60, no. 2, pp. 166–175, 2006.
[59]  L. J. Bach, F. Happe, S. Fleminger, and J. Powell, “Theory of mind: independence of executive function and the role of the frontal cortex in acquired brain injury,” Cognitive Neuropsychiatry, vol. 5, no. 3, pp. 175–192, 2000.
[60]  D. Samson, I. A. Apperly, C. Chiavarino, and G. W. Humphreys, “Left temporoparietal junction is necessary for representing someone else's belief,” Nature Neuroscience, vol. 7, no. 5, pp. 499–500, 2004.
[61]  L. Young, F. Cushman, M. Hauser, and R. Saxe, “The neural basis of the interaction between theory of mind and moral judgment,” Proceedings of the National Academy of Sciences United States, vol. 104, no. 20, pp. 8235–8240, 2007.
[62]  Y. Sarfati, M. C. Hardy-Bayle, C. Besche, and D. Widlocher, “Attribution of intentions to others in people with schizophrenia: a non- verbal exploration with comic strips,” Schizophrenia Research, vol. 25, no. 3, pp. 199–209, 1997.
[63]  Y. Sarfati, M. C. Hardy-Bayle, E. Brunet, and D. Widlocher, “Investigating theory of mind in schizophrenia: influence of verbalization in disorganized and non-disorganized patients,” Schizophrenia Research, vol. 37, no. 2, pp. 183–190, 1999.
[64]  U. Dimberg, M. Thunberg, and K. Elmehed, “Unconscious facial reactions to emotional facial expressions,” Psychological Science, vol. 11, no. 1, pp. 86–89, 2000.
[65]  L. Carr, M. Iacoboni, M. C. Dubeaut, J. C. Mazziotta, and G. L. Lenzi, “Neural mechanisms of empathy in humans: a relay from neural systems for imitation to limbic areas,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 9, pp. 5497–5502, 2003.
[66]  J. Narumoto, T. Okada, N. Sadato, K. Fukui, and Y. Yonekura, “Attention to emotion modulates fMRI activity in human right superior temporal sulcus,” Cognitive Brain Research, vol. 12, no. 2, pp. 225–231, 2001.
[67]  D. I. Leitman, D. H. Wolf, J. D. Ragland et al., “‘It's not what you say, but how you say it’: a reciprocal temporo-frontal network for affective prosody,” Frontiers in Human Neuroscience, vol. 4, article 19, 2010.
[68]  S. Baron-Cohen, S. Wheelwright, and T. Jolliffe, “Is there a “language of the eyes”? Evidence from normal adults, and adults with autism or Asperger Syndrome,” Visual Cognition, vol. 4, no. 3, pp. 311–331, 1997.
[69]  M.V. Lombardo, B. Chakrabarti, E.T. Bullmore et al., “Shared neural circuits for mentalizing about the self and others,” Journal of Cognitive Neuroscience, vol. 22, no. 7, pp. 1623–1635, 2010.
[70]  T. Akiyama, M. Kato, T. Muramatsu, F. Saito, S. Umeda, and H. Kashima, “Gaze but not arrows: a dissociative impairment after right superior temporal gyrus damage,” Neuropsychologia, vol. 44, no. 10, pp. 1804–1810, 2006.
[71]  N. Boddaert, N. Chabane, H. Gervais et al., “Superior temporal sulcus anatomical abnormalities in childhood autism: a voxel-based morphometry MRI study,” NeuroImage, vol. 23, no. 1, pp. 364–369, 2004.
[72]  K. A. Pelphrey, R. J. Viola, and G. McCarthy, “When strangers pass: processing of mutual and averted social gaze in the superior temporal sulcus,” Psychological Science, vol. 15, no. 9, pp. 598–603, 2004.
[73]  R. Saxe, D. K. Xiao, G. Kovacs, D. I. Perrett, and N. Kanwisher, “A region of right posterior superior temporal sulcus responds to observed intentional actions,” Neuropsychologia, vol. 42, no. 11, pp. 1435–1446, 2004.
[74]  J. Schultz, H. Imamizu, M. Kawato, and C. D. Frith, “Activation of the human superior temporal gyrus during observation of goal attribution by intentional objects,” Journal of Cognitive Neuroscience, vol. 16, no. 10, pp. 1695–1705, 2004.
[75]  A. P. Atkinson, A. S. Heberlein, and R. Adolphs, “Spared ability to recognise fear from static and moving whole-body cues following bilateral amygdala damage,” Neuropsychologia, vol. 45, no. 12, pp. 2772–2782, 2007.
[76]  C. Cristinzio, K. N'Diaye, M. Seeck, P. Vuilleumier, and D. Sander, “Integration of gaze direction and facial expression in patients with unilateral amygdala damage,” Brain, vol. 133, no. 1, pp. 248–261, 2010.
[77]  J. Grezes, S. Pichon, and B. De Gelder, “Perceiving fear in dynamic body expressions,” NeuroImage, vol. 35, no. 2, pp. 959–967, 2007.
[78]  E. L. Altschuler and V. S. Ramachandran, “Last but not least: a simple method to stand outside oneself,” Perception, vol. 36, no. 4, pp. 632–634, 2007.
[79]  V. I. Petkova and H. H. Ehrsson, “If I were you: perceptual illusion of body swapping,” PLoS ONE, vol. 3, no. 12, Article ID e3832, 2008.
[80]  T. E. Feinberg, Altered Egos: How the Brain Creates the Self, Oxford University Press, 2001.
[81]  M. Tsakiris, “My body in the brain: a neurocognitive model of body-ownership,” Neuropsychologia, vol. 48, no. 3, pp. 703–712, 2010.
[82]  K. J. Wheaton, J. C. Thompson, A. Syngeniotis, D. F. Abbott, and A. Puce, “Viewing the motion of human body parts activates different regions of premotor, temporal, and parietal cortex,” NeuroImage, vol. 22, no. 1, pp. 277–288, 2004.
[83]  C. Keysers, B. Wicker, V. Gazzola, J. L. Anton, L. Fogassi, and V. Gallese, “A touching sight: SII/PV activation during the observation and experience of touch,” Neuron, vol. 42, no. 2, pp. 335–346, 2004.
[84]  S. A. Spence, D. J. Brooks, S. R. Hirsch, P. F. Liddle, J. Meehan, and P. M. Grasby, “A PET study of voluntary movement in schizophrenic patients experiencing passivity phenomena (delusions of alien control),” Brain, vol. 120, no. 11, pp. 1997–2011, 1997.
[85]  C. Farrer, N. Franck, C. D. Frith et al., “Neural correlates of action attribution in schizophrenia,” Psychiatry Research, vol. 131, no. 1, pp. 31–44, 2004.
[86]  D. J. Holt, B. S. Cassidy, J. R. Andrews-Hanna et al., “An anterior-to-posterior shift in midline cortical activity inschizophrenia during self-reflection,” Biological Psychiatry, vol. 69, no. 5, pp. 415–423, 2011.
[87]  G. Northoff, A. Heinzel, M. de Greck, F. Bermpohl, H. Dobrowolny, and J. Panksepp, “Self-referential processing in our brain—a meta-analysis of imaging studies on the self,” NeuroImage, vol. 31, no. 1, pp. 440–457, 2006.
[88]  L. T. Rameson, A. B. Satpute, and M. D. Lieberman, “The neural correlates of implicit and explicit self-relevant processing,” NeuroImage, vol. 50, no. 2, pp. 701–708, 2010.
[89]  S. J. Gillihan and M. J. Farah, “Is self special? A critical review of evidence from experimental psychology and cognitive neuroscience,” Psychological Bulletin, vol. 131, no. 1, pp. 76–97, 2005.
[90]  H. C. Lou, B. Luber, A. Stanford, and S. H. Lisanby, “Self-specific processing in the default network: a single-pulse TMS study,” Experimental Brain Research, vol. 207, no. 1-2, pp. 27–38, 2010.
[91]  L. K. Fellows and M. J. Farah, “Is anterior cingulate cortex necessary for cognitive control?” Brain, vol. 128, no. 4, pp. 788–796, 2005.
[92]  B. A. Maher, “The relationship between delusions and hallucinations,” Current Psychiatry Reports, vol. 8, no. 3, pp. 179–183, 2006.
[93]  D. M. Amodio and C. D. Frith, “Meeting of minds: the medial frontal cortex and social cognition,” Nature Reviews Neuroscience, vol. 7, no. 4, pp. 268–277, 2006.
[94]  G. Northoff, “Self and brain: what is self-related processing?” Trends Cognitive Science, vol. 15, no. 5, pp. 186–187, 2011, Author reply 187–188.
[95]  R. P. Spunt and M. D. Lieberman, “An integrative model of the neural systems supporting the comprehension of observed emotional behavior,” NeuroImage, vol. 59, no. 3, pp. 3050–3059, 2012.
[96]  E. G. Bruneau, A. Pluta, and R. Saxe, “Distinct roles of the “Shared Pain” and “Theory of Mind” networks in processing others' emotional suffering,” Neuropsychologia, vol. 50, no. 2, pp. 219–231, 2012.
[97]  R. J. Blair and L. Cipolotti, “Impaired social response reversal. A case of 'acquired sociopathy',” Brain, vol. 123, no. 6, pp. 1122–1141, 2000.
[98]  J. L. Saver and A. R. Damasio, “Preserved access and processing of social knowledge in a patient with acquired sociopathy due to ventromedial frontal damage,” Neuropsychologia, vol. 29, no. 12, pp. 1241–1249, 1991.
[99]  A. R. Damasio, D. Tranel, and H. Damasio, “Individuals with sociopathic behavior caused by frontal damage fail to respond autonomically to social stimuli,” Behavioural Brain Research, vol. 41, no. 2, pp. 81–94, 1990.
[100]  J. Kim, E. Yang, L. Overhalser et al., “Orbitofrontal cortex lesions disrupt adaptation of choice-behavior to varying affective context in economic decision-making,” In press.
[101]  J. W. Kable and P. W. Glimcher, “The neurobiology of decision: consensus and controversy,” Neuron, vol. 63, no. 6, pp. 733–745, 2009.
[102]  D. H. Ffytche, R. J. Howard, M. J. Brammer, A. David, P. Woodruff, and S. Williams, “The anatomy of conscious vision: an fMRI study of visual hallucinations,” Nature Neuroscience, vol. 1, no. 8, pp. 738–742, 1998.
[103]  E. F. Torrey, “Schizophrenia and the inferior parietal lobule,” Schizophrenia Research, vol. 97, no. 1–3, pp. 215–225, 2007.
[104]  N. Geschwind, “Disconnexion syndromes in animals and man,” Brain, vol. 88, no. 2, pp. 237–294, 1965.
[105]  R. A. Honea, A. Meyer-Lindenberg, K. B. Hobbs et al., “Is gray matter volume an intermediate phenotype for schizophrenia? A voxel-based morphometry study of patients with schizophrenia and their healthy siblings,” Biological Psychiatry, vol. 63, no. 5, pp. 465–474, 2008.
[106]  J. M. Segall, J. A. Turner, T. G. Van Erp et al., “Voxel-based morphometric multisite collaborative study on schizophrenia,” Schizophrenia Bulletin, vol. 35, no. 1, pp. 82–95, 2009.
[107]  S. D. Han, P. G. Nestor, M. Hale-Spencer et al., “Functional neuroimaging of word priming in males with chronic schizophrenia,” NeuroImage, vol. 35, no. 1, pp. 273–282, 2007.
[108]  C. G. Wible, K. Lee, I. Molina et al., “FMRI activity correlated with auditory hallucinations during performance of a working memory task: data from the FBIRN consortium study,” Schizophrenia Bulletin, vol. 35, no. 1, pp. 47–57, 2009.
[109]  R. I. Hashimoto, K. Lee, A. Preus, R. W. McCarley, and C. G. Wible, “An fMRI study of functional abnormalities in the verbal working memory system and the relationship to clinical symptoms in chronic schizophrenia,” Cerebral Cortex, vol. 20, no. 1, pp. 46–60, 2010.
[110]  B. R. Lennox, S. Bert, G. Park, P. B. Jones, and P. G. Morris, “Spatial and temporal mapping of neural activity associated with auditory hallucinations,” The Lancet, vol. 353, no. 9153, p. 644, 1999.
[111]  S. A. Schobel, N. M. Lewandowski, C. M. Corcoran et al., “Differential targeting of the CA1 subfield of the hippocampal formation by schizophrenia and related psychotic disorders,” Archives of General Psychiatry, vol. 66, no. 9, pp. 938–946, 2009.
[112]  A. G. Garrity, G. D. Pearlson, K. McKiernan, D. Lloyd, K. A. Kiehl, and V. D. Calhoun, “Aberrant “default mode” functional connectivity in schizophrenia,” American Journal of Psychiatry, vol. 164, no. 3, pp. 450–457, 2007.
[113]  J. L. Vincent, A. Z. Snyder, M. D. Fox et al., “Coherent spontaneous activity identifies a hippocampal-parietal memory network,” Journal of Neurophysiology, vol. 96, no. 6, pp. 3517–3531, 2006.
[114]  R. L. Buckner, J. Sepulcre, T. Talukdar et al., “Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer's disease,” Journal of Neuroscience, vol. 29, no. 6, pp. 1860–1873, 2009.
[115]  M. F?cking, P. Dicker, J. A. English, K. O. Schubert, M. J. Dunn, and D. R. Cotter, “Commonproteomic changes in the hippocampus in schizophrenia and bipolar disorder and particular evidence for involvement of cornu ammonis regions 2 and 3,” Archives of General Psychiatry, vol. 68, no. 5, pp. 477–488, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133