全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Anterior-Posterior Instability of the Knee Following ACL Reconstruction with Bone-Patellar Tendon-Bone Ligament in Comparison with Four-Strand Hamstrings Autograft

DOI: 10.1155/2013/572083

Full-Text   Cite this paper   Add to My Lib

Abstract:

Purpose. To evaluate anterior-posterior knee laxity using two different autografts. Material-Methods. 40 patients, (34 males and 6 women), 17–54 years old (mean: 31), were included in the present study. Group A (4SHS = 20) underwent reconstruction using four-strand hamstrings, and group B (BPBT = 20) underwent reconstruction using bone-patellar tendon-bone autograft. Using the KT-1000 arthrometer, knee instability was calculated in both knees of all patients preoperatively and 3, 6, and 12 months after surgery at the ACL-operated knee. The contralateral healthy knee was used as an internal control group. Results. Anterior-posterior instability using the KT1000 Arthrometer was found to be increased after ACL insufficiency. The recorded laxity improved after arthroscopic ACL reconstruction in both groups. However, statistically significant greater values were detected in the bone-patellar tendon-bone group, which revealed reduction of anteroposterior stability values to an extent, where no statistical significance with the normal values even after 3 months after surgery was observed. Conclusions. Anterior-Posterior instability of the knee improved significantly after arthroscopic ACL reconstruction. The bone-patellar tendon-bone graft provided an obvious greater stability. 1. Introduction The anterior cruciate ligament (ACL) is a major stabilizing element of the knee since it is the main anatomical structure which prevents the anterior displacement of the tibia relative to the femur [1, 2]. Simultaneously, it is an important factor for the normal knee movements, since it contributes not only to the static, but also to the dynamic stability of the joint [3]. Dynamic stability is guaranteed by the presence of specific ligament mechanoreceptors which are considered an essential element for knee proprioception as it has been revealed by a few anatomical and histological studies [3–6]. The ACL is the most frequently injured knee ligament especially as regards sports that include movements with sudden direction changes, as knee supports body weight during them [7–9]. These lesions often lead to ligament rupture with subsequent impairment and instability of the knee. Diagnosis is based presumably on several clinical examinations such as Lachman test, the anterior drawer test, and pivot shift test [2]. This kind of examinations, depending on the extent of the time that is inserted between the examination and the accident, the adeptness, and the experience of the health professional, as well as the body type of the patient, can lead to different results [10].

References

[1]  F. H. Fu, C. D. Harner, D. L. Johnson, M. D. Miller, and S. L. Woo, “Biomechanics of knee ligaments: basic concepts and clinical application,” Instructional course lectures, vol. 43, pp. 137–148, 1994.
[2]  S. L.-Y. Woo, R. E. Debski, J. D. Withrow, and M. A. Janaushek, “Biomechanics of knee ligaments,” American Journal of Sports Medicine, vol. 27, no. 4, pp. 533–543, 1999.
[3]  H. Johansson, P. Sjolander, and P. Sojka, “A sensory role for the cruciate ligaments,” Clinical Orthopaedics and Related Research, no. 268, pp. 161–178, 1991.
[4]  T. Hogervorst and R. A. Brand, “Mechanoreceptors in joint function,” Journal of Bone and Joint Surgery, vol. 80, no. 9, pp. 1365–1378, 1998.
[5]  A. G. Angoules, A. F. Mavrogenis, R. Dimitriou et al., “Knee proprioception following ACL reconstruction; a prospective trial comparing hamstrings with bone-patellar tendon-bone autograft,” The Knee, vol. 18, no. 2, pp. 76–82, 2011.
[6]  M. S. Dhillon, K. Bali, and S. Prabhakar, “Proprioception in anterior cruciate ligament deficient knees and its relevance in anterior cruciate ligament reconstruction,” Indian Journal of Orthopaedics, vol. 45, no. 4, pp. 294–300, 2011.
[7]  S. R. Bollen and B. W. Scott, “Rupture of the anterior cruciate ligament—a quiet epidemic?” Injury, vol. 27, no. 6, pp. 407–409, 1996.
[8]  R. J. Johnson, “The anterior cruciate: a dilemma in sports medicine,” International Journal of Sports Medicine, vol. 3, no. 2, pp. 71–79, 1982.
[9]  K. Miyasaka, D. Daniel, M. Stone, et al., “The incidence of knee ligament injuries in general population,” The American Journal of Knee Surgery, vol. 4, no. 1, pp. 3–7, 1991.
[10]  M. Collette, J. Courville, M. Forton, and B. Gagnière, “Objective evaluation of anterior knee laxity; comparison of the KT-1000 and GNRB arthrometers,” Knee Surgery, Sports Traumatology, Arthroscopy, vol. 20, no. 11, pp. 2233–2238, 2012.
[11]  S. Arneja and J. Leith, “Review article: validity of the KT-1000 knee ligament arthrometer,” Journal of Orthopaedic Surgery, vol. 17, no. 1, pp. 77–79, 2009.
[12]  D. M. Daniel, L. L. Malcom, and G. Losse, “Instrumented measurement of anterior laxity of the knee,” Journal of Bone and Joint Surgery A, vol. 67, no. 5, pp. 720–726, 1985.
[13]  T. B. Neeb, G. Aufdemkampe, J. H. D. Wagener, and L. Mastenbroek, “Assessing anterior cruciate ligament injuries: the association and differential value of questionnaires, clinical tests, and functional tests,” Journal of Orthopaedic and Sports Physical Therapy, vol. 26, no. 6, pp. 324–331, 1997.
[14]  D. J. Biau, C. Tournoux, S. Katsahian, P. Schranz, and R. Nizard, “ACL reconstruction: a meta-analysis of functional scores,” Clinical Orthopaedics and Related Research, no. 458, pp. 180–187, 2007.
[15]  Y. Xu, Y. F. Ao, J. Q. Wang, and G.-Q. Cui, “Prospective randomized comparison of anatomic single- and double-bundle anterior cruciate ligament reconstruction,” Knee Surgery, Sports Traumatology, Arthroscopy, 2013.
[16]  M. C. Forster and I. W. Forster, “Patellar tendon or four-strand hamstring? A systematic review of autografts for anterior cruciate ligament reconstruction,” The Knee, vol. 12, no. 3, pp. 225–230, 2005.
[17]  S. Li, Y. Chen, Z. W. Lin, W. Cui, J. Zhao, and W. Su, “A systematic review of randomized controlled clinical trials comparing hamstring autografts versus bone-patellar tendon-bone autografts for the reconstruction of the anterior cruciate ligament,” Archives of Orthopaedic and Trauma Surgery, vol. 132, no. 9, pp. 1287–1297, 2012.
[18]  MEDrnetric Corporation, KT-1000/KT-2000 Knee Ligament Arthrometer User's Guide, MEDrnetric Corporation, San Diego, Calif, USA.
[19]  D. M. Daniel, M. L. Stone, R. Sachs, and L. Malcom, “Instrumented measurement of anterior knee laxity in patients with acute anterior cruciate ligament disruption,” American Journal of Sports Medicine, vol. 13, no. 6, pp. 401–407, 1985.
[20]  D. L. Kowalk, E. M. Wojtys, J. Disher, and P. Loubert, “Quantitative analysis of the measuring capabilities of the KT-1000 knee ligament arthrometer,” American Journal of Sports Medicine, vol. 21, no. 5, pp. 744–747, 1993.
[21]  B. R. Bach Jr., R. F. Warren, W. M. Flynn, M. Kroll, and T. L. Wickiewiecz, “Arthrometric evaluation of knees that have a torn anterior cruciate ligament,” Journal of Bone and Joint Surgery A, vol. 72, no. 9, pp. 1299–1306, 1990.
[22]  L. Ejerhed, J. Kartus, N. Sernert, K. K?hier, and J. Karlsson, “Patellar tendon or semitendinosus tendon autografts for anterior cruciate ligament reconstruction? A prospective randomized study with a two-year follow-up,” American Journal of Sports Medicine, vol. 31, no. 1, pp. 19–25, 2003.
[23]  K. B. Freedman, M. J. D'Amato, D. D. Nedeff, A. Kaz, and B. R. Bach Jr., “Arthroscopic anterior cruciate ligament reconstruction: a metaanalysis comparing patellar tendon and hamstring tendon autografts,” American Journal of Sports Medicine, vol. 31, no. 1, pp. 2–11, 2003.
[24]  R. A. Marder, J. R. Raskind, and M. Carroll, “Prospective evaluation of arthroscopically assisted anterior cruciate ligament reconstruction. Patellar tendon versus semitendinosus and gracilis tendons,” American Journal of Sports Medicine, vol. 19, no. 5, pp. 478–484, 1991.
[25]  L. Engebretsen, P. Benum, O. Fasting, A. Molster, and T. Strand, “A prospective, randomized study of three surgical techniques for treatment of acute ruptures of the anterior cruciate ligament,” American Journal of Sports Medicine, vol. 18, no. 6, pp. 585–590, 1990.
[26]  I. S. Corry, J. M. Webb, A. J. Clingeleffer, and L. A. Pinczewski, “Arthroscopic reconstruction of the anterior cruciate ligament. A comparison of patellar tendon autograft and four-strand hamstring tendon autograft,” American Journal of Sports Medicine, vol. 27, no. 4, pp. 444–454, 1999.
[27]  A. L. Otero and L. A. Hutcheson, “A comparison of the doubled semitendinosus/gracilis and central third of the patellar tendon autografts in arthroscopic anterior cruciate ligament reconstruction,” Arthroscopy, vol. 9, no. 2, pp. 143–148, 1993.
[28]  M. Yunes, J. C. Richmond, E. A. Engels, and L. A. Pincweski, “Patellar versus hamstring tendons in anterior cruciate ligament reconstruction: a meta-analysis,” Arthroscopy, vol. 17, no. 3, pp. 248–257, 2001.
[29]  J. A. Feller, K. E. Webster, and B. Gavin, “Early post-operative morbidity following anterior cruciate ligament reconstruction: patellar tendon versus hamstring graft,” Knee Surgery, Sports Traumatology, Arthroscopy, vol. 9, no. 5, pp. 260–266, 2001.
[30]  A. F. Anderson, R. B. Snyder, and A. B. Lipscomb Jr., “Anterior cruciate ligament reconstruction. A prospective randomized study of three surgical methods,” American Journal of Sports Medicine, vol. 29, no. 3, pp. 272–279, 2001.
[31]  M. D. Shaieb, D. M. Kan, S. K. Chang, J. M. Marumoto, and A. B. Richardson, “A prospective randomized comparison of patellar tendon versus semitendinosus and gracilis tendon autografts for anterior cruciate ligament reconstruction,” American Journal of Sports Medicine, vol. 30, no. 2, pp. 214–220, 2002.
[32]  A. Matsumoto, S. Yoshiya, H. Muratsu et al., “A comparison of bone-patellar tendon-bone and bone-hamstring tendon-bone autografts for anterior cruciate ligament reconstruction,” American Journal of Sports Medicine, vol. 34, no. 2, pp. 213–219, 2006.
[33]  D. J. Beard, J. L. Anderson, S. Davies, A. J. Price, and C. A. F. Dodd, “Hamstrings versus patella tendon for anterior cruciate ligament reconstruction: a randomised controlled trial,” The Knee, vol. 8, no. 1, pp. 45–50, 2001.
[34]  A. K. Aune, I. Holm, M. A. Risberg, H. K. Jensen, and H. Steen, “Four-strand hamstring tendon autograft compared with patellar tendon-bone autograft for anterior cruciate ligament reconstruction: a randomized study with two-year follow-up,” American Journal of Sports Medicine, vol. 29, no. 6, pp. 722–728, 2001.
[35]  M. Lidén, L. Ejerhed, N. Sernert, G. Laxdal, and J. Kartus, “Patellar tendon or semitendinosus tendon autografts for anterior cruciate ligament reconstruction: a prospective, randomized study with a 7-year follow-up,” American Journal of Sports Medicine, vol. 35, no. 5, pp. 740–748, 2007.
[36]  K. E. Webster, J. A. Feller, and K. A. Hameister, “Bone tunnel enlargement following anterior cruciate ligament reconstruction: a randomised comparison of hamstring and patellar tendon grafts with 2-year follow-up,” Knee Surgery, Sports Traumatology, Arthroscopy, vol. 9, no. 2, pp. 86–91, 2001.
[37]  M. Wagner, M. J. K??b, J. Schallock, N. P. Haas, and A. Weiler, “Hamstring tendon versus patellar tendon anterior cruciate ligament reconstruction using biodegradable interference fit fixation: a prospective matched-group analysis,” American Journal of Sports Medicine, vol. 33, no. 9, pp. 1327–1336, 2005.
[38]  I. Holm, B. E. Oiestad, M. A. Risberg, and A. K. Aune, “No difference in knee function or prevalence of osteoarthritis after reconstruction of the anterior cruciate ligament with 4-strand hamstring autograft versus patellar tendon-bone autograft: a randomized study with 10-year follow-up,” The American Journal of Sports Medicine, vol. 38, no. 3, pp. 448–454, 2010.
[39]  L. Herrington, C. Wrapson, M. Matthews, and H. Matthews, “Anterior Cruciate Ligament reconstruction, hamstring versus bone-patella tendon-bone grafts: a systematic literature review of outcome from surgery,” The Knee, vol. 12, no. 1, pp. 41–50, 2005.
[40]  F. R. Noyes, D. L. Butler, and E. S. Grood, “Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions,” Journal of Bone and Joint Surgery A, vol. 66, no. 3, pp. 344–352, 1984.
[41]  J. Kartus, L. Magnusson, S. Stener, S. Brandsson, B. I. Eriksson, and J. Karlsson, “Complications following arthroscopic anterior cruciate ligament reconstruction: a 2-5-year follow-up of 604 patients with special emphasis on anterior knee pain,” Knee Surgery, Sports Traumatology, Arthroscopy, vol. 7, no. 2, pp. 2–8, 1999.
[42]  D. J. Biau, C. Tournoux, S. Katsahian, P. J. Schranz, and R. S. Nizard, “Bone-patellar tendon-bone autografts versus hamstring autografts for reconstruction of anterior cruciate ligament: meta-analysis,” British Medical Journal, vol. 332, no. 7548, pp. 995–998, 2006.
[43]  S. Li, W. Su, J. Zhao et al., “A meta-analysis of hamstring autografts versus bone-patellar tendon-bone autografts for reconstruction of the anterior cruciate ligament,” The Knee, vol. 18, no. 5, pp. 287–293, 2011.
[44]  G. Koutras, P. Papadopoulos, I. P. Terzidis, I. Gigis, and E. Pappas, “Short-term functional and clinical outcomes after ACL reconstruction with hamstrings autograft: transtibial versus anteromedial portal technique,” Knee Surgery, Sports Traumatology, Arthroscopy, 2012.
[45]  M. E. Hantes, Z. Dailiana, V. C. Zachos, and S. E. Varitimidis, “Anterior cruciate ligament reconstruction using the Bio-TransFix femoral fixation device and anteromedial portal technique,” Knee Surgery, Sports Traumatology, Arthroscopy, vol. 14, no. 5, pp. 497–501, 2006.
[46]  E. Ageberg, “Consequences of a ligament injury on neuromuscular function and relevance to rehabilitation—using the anterior cruciate ligament-injured knee as model,” Journal of Electromyography and Kinesiology, vol. 12, no. 3, pp. 205–212, 2002.
[47]  T. E. Hewett, M. V. Paterno, and G. D. Myer, “Strategies for enhancing proprioception and neuromuscular control of the knee,” Clinical Orthopaedics and Related Research, no. 402, pp. 76–94, 2002.
[48]  I. C. Boca and M. Dan, “The effectiveness of proprioceptive neuromuscular facilitation techniques and hidrotherapy to improve knee stability after anterior cruciate ligament reconstruction,” British Journal of Sports Medicine, vol. 47, no. 10, p. e3, 2013.
[49]  M. A. Risberg, I. Holm, G. Myklebust, and L. Engebretsen, “Neuromuscular training versus strength training during first 6 months after anterior cruciate ligament reconstruction: a randomized clinical trial,” Physical Therapy, vol. 87, no. 6, pp. 737–750, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133