全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Radiographically Occult and Subtle Fractures: A Pictorial Review

DOI: 10.1155/2013/370169

Full-Text   Cite this paper   Add to My Lib

Abstract:

Radiographically occult and subtle fractures are a diagnostic challenge. They may be divided into (1) “high energy trauma fracture,” (2) “fatigue fracture” from cyclical and sustained mechanical stress, and (3) “insufficiency fracture” occurring in weakened bone (e.g., in osteoporosis and postradiotherapy). Independently of the cause, the initial radiographic examination can be negative either because the findings seem normal or are too subtle. Early detection of these fractures is crucial to explain the patient’s symptoms and prevent further complications. Advanced imaging tools such as computed tomography, magnetic resonance imaging, and scintigraphy are highly valuable in this context. Our aim is to raise the awareness of radiologists and clinicians in these cases by presenting illustrative cases and a discussion of the relevant literature. 1. Introduction Radiographically occult and subtle fractures are a common diagnostic challenge in daily practice. Indeed, fractures represent up to 80% of the missed diagnoses in the emergency department [1]. Failure to recognize the subtle signs of osseous injury is one of the reasons behind this major diagnostic challenge [2]. While occult fractures present no radiographic findings, radiographically subtle fractures are easily overlooked on initial radiographs. In both cases, a negative radiographic diagnosis with prominent clinical suspicion of osseous injury will prompt advanced imaging examination such as computed tomography (CT), magnetic resonance imaging (MRI), ultrasound, and nuclear medicine to confirm or exclude the clinically suspected diagnosis. The burden entailed in missing these fractures includes prolonged pain with a loss of function, and disability. Early detection, on the other hand, enables more effective treatment, a shorter hospitalization period if necessary, and decreased medical costs in the long run. It will also prevent inherent complications such as nonunion, malunion, premature osteoarthritis, and avascular osteonecrosis (as in scaphoid fracture) [3]. Occult and subtle fractures may be divided into: (1) fractures associated with high energy trauma; (2) fatigue fracture secondary to repetitive and unusual stress being applied to bone with normal elastic resistance; and (3) insufficiency fracture resulting from normal or minimal stress on a bone with decreased elastic resistance [4]. The term “stress fracture” is more general and encompasses both of the latter two entities [5]. Pediatric and microtrabecular fractures—known as bone bruises and contusions—are outside the scope of this

References

[1]  H. R. Guly, “Diagnostic errors in an accident and emergency department,” Emergency Medicine Journal, vol. 18, no. 4, pp. 263–269, 2001.
[2]  D. T. Sshwartz, “Ten most coommonly missed radiographic findings in the ED,” in ACEP Scientific Assembly, Boston Convention and Exhibition Center, 2009.
[3]  C. A. Goldfarb, Y. Yin, L. A. Gilula, A. J. Fisher, and M. I. Boyer, “Wrist fractures: what the clinician wants to know,” Radiology, vol. 219, no. 1, pp. 11–28, 2001.
[4]  R. L. Pentecost, R. A. Murray, and H. H. Brindley, “Fatigue, insufficiency, and pathologic fractures,” The Journal of the American Medical Association, vol. 187, pp. 1001–1004, 1964.
[5]  L. M. Fayad, I. R. Kamel, S. Kawamoto, D. A. Bluemke, F. J. Frassica, and E. K. Fishman, “Distinguishing stress fractures from pathologic fractures: a multimodality approach,” Skeletal Radiology, vol. 34, no. 5, pp. 245–259, 2005.
[6]  B. J. Manaster, “From the RSNA refresher courses. Radiological society of North America. Adult chronic hip pain: radiographic evaluation,” Radiographics, vol. 20, pp. S3–S25, 2000.
[7]  C. J. Savoca, “Stress fractures. A classification of the earliest radiographic signs,” Radiology, vol. 100, no. 3, pp. 519–524, 1971.
[8]  M. Geijer, A. M. B?rjesson, and J. H. G?thlin, “Clinical utility of tomosynthesis in suspected scaphoid fracture. A pilot study,” Skeletal Radiology, vol. 40, no. 7, pp. 863–867, 2011.
[9]  K. A. Buckwalter and J. M. Farber, “Application of multidetector CT in skeletal trauma,” Seminars in Musculoskeletal Radiology, vol. 8, no. 2, pp. 147–156, 2004.
[10]  S. P. Blake and A. M. Connors, “Sacral insufficiency fracture,” British Journal of Radiology, vol. 77, no. 922, pp. 891–896, 2004.
[11]  W. Zbijewski, P. De Jean, P. Prakash et al., “A dedicated cone-beam CT system for musculoskeletal extremities imaging: design, optimization, and initial performance characterization,” Medical Physics, vol. 38, no. 8, pp. 4700–4713, 2011.
[12]  W. Mallee, J. N. Doornberg, D. Ring, C. N. Van Dijk, M. Maas, and J. C. Goslings, “Comparison of CT and MRI for diagnosis of suspected scaphoid fractures,” Journal of Bone and Joint Surgery A, vol. 93, no. 1, pp. 20–28, 2011.
[13]  D. K. Hakkarinen, K. V. Banh, and G. W. Hendey, “Magnetic resonance imaging identifies occult hip fractures missed by 64-slice computed tomography,” The Journal of Emergency Medicine, vol. 43, pp. 303–307, 2012.
[14]  S. Y. Liong and R. W. Whitehouse, “Lower extremity and pelvic stress fractures in athletes,” British Journal of Radiology, vol. 85, pp. 1148–1156, 2012.
[15]  M. Fredericson, F. Jennings, C. Beaulieu, and G. O. Matheson, “Stress fractures in athletes,” Topics in Magnetic Resonance Imaging, vol. 17, no. 5, pp. 309–325, 2006.
[16]  M. Memarsadeghi, M. J. Breitenseher, C. Schaefer-Prokop et al., “Occult scaphoid fractures: comparison of multidetector CT and MR imaging—initial experience,” Radiology, vol. 240, no. 1, pp. 169–176, 2006.
[17]  H. Chatha, S. Ullah, and Z. Cheema, “Review article: magnetic resonance imaging and computed tomography in the diagnosis of occult proximal femur fractures,” The Journal of Orthopaedic Surgery, vol. 19, pp. 99–103, 2011.
[18]  A. Y. Shin, W. D. Morin, J. D. Gorman, S. B. Jones, and A. S. Lapinsky, “The superiority of magnetic resonance imaging in differentiating the cause of hip pain in endurance athletes,” American Journal of Sports Medicine, vol. 24, no. 2, pp. 168–176, 1996.
[19]  K. H. Lee, H. M. Kim, Y. S. Kim et al., “Isolated fractures of the greater trochanter with occult intertrochanteric extension,” Archives of Orthopaedic and Trauma Surgery, vol. 130, no. 10, pp. 1275–1280, 2010.
[20]  J. M. Ahn and G. Y. El-Khoury, “Occult Fractures of Extremities,” Radiologic Clinics of North America, vol. 45, no. 3, pp. 561–579, 2007.
[21]  J. Cannon, S. Silvestri, and M. Munro, “Imaging choices in occult hip fracture,” Journal of Emergency Medicine, vol. 37, no. 2, pp. 144–152, 2009.
[22]  M. Hossain, C. Barwick, A. K. Sinha, and J. G. Andrew, “Is magnetic resonance imaging (MRI) necessary to exclude occult hip fracture?” Injury, vol. 38, no. 10, pp. 1204–1208, 2007.
[23]  S. J. Rubin, J. D. Marquardt, R. H. Gottlieb, S. P. Meyers, S. M. S. Totterman, and R. E. O'Mara, “Magnetic resonance imaging: a cost-effective alternative to bone scintigraphy in the evaluation of patients with suspected hip fractures,” Skeletal Radiology, vol. 27, no. 4, pp. 199–204, 1998.
[24]  E. Tsiridis, N. Upadhyay, and P. V. Giannoudis, “Sacral insufficiency fractures: current concepts of management,” Osteoporosis International, vol. 17, no. 12, pp. 1716–1725, 2006.
[25]  S. F. Quinn and J. L. McCarthy, “Prospective evaluation of patients with suspected hip fracture and indeterminate radiographs: use of T1-weighted MR images,” Radiology, vol. 187, no. 2, pp. 469–471, 1993.
[26]  R. H. Daffner and H. Pavlov, “Stress fractures: current concepts,” American Journal of Roentgenology, vol. 159, no. 2, pp. 245–252, 1992.
[27]  K. M. Friedrich, A. Komorowski, and S. Trattnig, “7T imaging of the wrist,” Seminars in Musculoskeletal Radiology, vol. 16, pp. 88–92, 2012.
[28]  J. G. Ravenel, L. Gordon, T. L. Pope, and C. E. Reed, “FDG-PET uptake in occult acute pelvic fracture,” Skeletal Radiology, vol. 33, no. 2, pp. 99–101, 2004.
[29]  L. Allainmat, M. Aubault, V. Noel, F. Baulieu, J. Laulan, and V. Eder, “Use of hybrid SPECT/CT for diagnosis of radiographic occult fractures of the wrist,” Clinical Nuclear Medicine. In press.
[30]  M. T. Hirschmann, R. Schmid, R. Dhawan, et al., “et al. Combined single photon emission computerized tomography and conventional computerized tomography: clinical value for the shoulder surgeons?” International Journal of Shoulder Surgery, vol. 5, pp. 72–76, 2011.
[31]  J. E. Rabiner, H. Khine, J. R. Avner, L. M. Friedman, and J. W. Tsung, “Accuracy of point-of-care ultrasonography for diagnosis of elbow fractures in children,” Annals of Emergency Medicine, vol. 61, pp. 9–17, 2013.
[32]  I. Barata, R. Spencer, A. Suppiah, C. Raio, M. F. Ward, and A. Sama, “Emergency ultrasound in the detection of pediatric long-bone fractures,” Pediatric Emergency Care, vol. 28, pp. 1154–1157, 2012.
[33]  N. Karabay, “US findings in traumatic wrist and hand injuries,” Diagnostic and Interventional Radiology, 2012.
[34]  D. Arni, V. Lambert, M. Delmi, and S. Bianchi, “Insufficiency fracture of the calcaneum: sonographic findings,” Journal of Clinical Ultrasound, vol. 37, no. 7, pp. 424–427, 2009.
[35]  A. Papalada, N. Malliaropoulos, K. Tsitas, et al., “Ultrasound as a primary evaluation tool of bone stress injuries in elite track and field athletes,” The American Journal of Sports Medicine, vol. 40, pp. 915–919, 2012.
[36]  C. Y. Hung and K. V. Chang, “Is therapeutic ultrasound a reliable tool for the diagnosis of bone stress injuries? Letter to the editor,” The American Journal of Sports Medicine, vol. 40, article NP25, 2012.
[37]  C. J. Wei, W. C. Tsai, C. M. Tiu, H. T. Wu, H. J. Chiou, and C. Y. Chang, “Systematic analysis of missed extremity fractures in emergency radiology,” Acta Radiologica, vol. 47, no. 7, pp. 710–717, 2006.
[38]  R. D. Welling, J. A. Jacobson, D. A. Jamadar, S. Chong, E. M. Caoili, and P. J. L. Jebson, “MDCT and radiography of wrist fractures: radiographic sensitivity and fracture patterns,” American Journal of Roentgenology, vol. 190, no. 1, pp. 10–16, 2008.
[39]  A. Fotiadou, A. Patel, T. Morgan, and A. H. Karantanas, “Wrist injuries in young adults: the diagnostic impact of CT and MRI,” European Journal of Radiology, vol. 77, pp. 235–239, 2011.
[40]  S. E. Campbell and R. S. Fajardo, “Imaging of stress injuries of the pelvis,” Seminars in Musculoskeletal Radiology, vol. 12, no. 1, pp. 62–71, 2008.
[41]  S. G. West, J. L. Troutner, M. R. Baker, and H. M. Place, “Sacral insufficiency fractures in rheumatoid arthritis,” Spine, vol. 19, no. 18, pp. 2117–2121, 1994.
[42]  P. Kannus, M. Palvanen, J. Parkkari, S. Niemi, and M. J?rvinen, “Osteoporotic pelvic fractures in elderly women,” Osteoporosis International, vol. 16, no. 10, pp. 1304–1305, 2005.
[43]  N. J. Linstrom, J. E. Heiserman, K. E. Kortman et al., “Anatomical and biomechanical analyses of the unique and consistent locations of sacral insufficiency fractures,” Spine, vol. 34, no. 4, pp. 309–315, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133