High resolution and high field magnetic resonance neurography (MR neurography, MRN) is shown to have excellent anatomic capability. There have been considerable advances in the technology in the last few years leading to various feasibility studies using different structural and functional imaging approaches in both clinical and research settings. This paper is intended to be a useful seminar for readers who want to gain knowledge of the advancements in the MRN pulse sequences currently used in clinical practice as well as learn about the other techniques on the horizon aimed at better depiction of nerve anatomy, pathology, and potential noninvasive evaluation of nerve degeneration or regeneration. 1. Introduction High resolution and high field (3T) magnetic resonance neurography (MR neurography, MRN) has been shown to have excellent anatomic capability. This is in part due to the rapid improvements in coil technology and software in the last few years [1–3]. With improved detection of nerve anatomy and pathology, the value of quantitative functional MR methods as potential biomarkers in neuromuscular disease is also being increasingly recognized [4]. While high resolution 2D (dimensional) and 3D demonstration of peripheral nerve anatomy and pathology is the current state of the art, there have been considerable advances in various aspects of the field leading to successful feasibility studies employing various structural and functional imaging techniques in both clinical and research settings [1, 5–7]. This paper is intended to be a useful seminar for readers who want to gain knowledge of the advancements in the MRN pulse sequences currently used in clinical practice as well as learn about the other techniques on the horizon aimed at better depiction of nerve anatomy, pathology, and potential noninvasive evaluation of nerve degeneration or regeneration. 2. Clinical Need for MR Neurography It is estimated that about 5% of population has some form of neuropathy, and there is up to 5% incidence of peripheral nerve injuries in admissions to a level I trauma center [8, 9], with Sunderland grade I–IV injuries (nerve in continuity) far more common than the grade V injury (nerve discontinuity). Clinical evaluation and electrodiagnostic studies provide incomplete information about the anatomy and degree of injury. In particular, these studies are not able to differentiate among grade III–V injuries, which is important from a surgical point of view and patient prognosis [10, 11]. Many of these patients undergo conservative management for 1-2 years depending upon
References
[1]
M. Viallon, M. I. Vargas, H. Jlassi, K. O. L?vblad, and J. Delavelle, “High-resolution and functional magnetic resonance imaging of the brachial plexus using an isotropic 3D T2 STIR (Short Term Inversion Recovery) SPACE sequence and diffusion tensor imaging,” European Radiology, vol. 18, no. 5, pp. 1018–1023, 2008.
[2]
A. Chhabra, E. H. Williams, K. C. Wang, A. L. Dellon, and J. A. Carrino, “MR neurography of neuromas related to nerve injury and entrapment with surgical correlation,” American Journal of Neuroradiology, vol. 31, no. 8, pp. 1363–1368, 2010.
[3]
Z. Zhang, L. Song, Q. Meng et al., “Morphological analysis in patients with sciatica: a magnetic resonance imaging study using three-dimensional high-resolution diffusion-weighted magnetic resonance neurography techniques,” Spine, vol. 34, no. 7, pp. E245–E250, 2009.
[4]
A. Chhabra, G. Andreisek, T. Soldatos, et al., “MR neurography: past, present, and future,” American Journal of Roentgenology, vol. 197, pp. 583–591, 2011.
[5]
R. Guggenberger, P. Eppenberger, D. Markovic et al., “MR neurography of the median nerve at 3. 0T: optimization of diffusion tensor imaging and fiber tractography,” European Journal of Radiology, vol. 81, no. 7, pp. e775–e782, 2012.
[6]
A. Chhabra, T. Soldatos, T. K. Subhawong et al., “The application of three-dimensional diffusion-weighted PSIF technique in peripheral nerve imaging of the distal extremities,” Journal of Magnetic Resonance Imaging, vol. 34, no. 4, pp. 962–967, 2011.
[7]
T. Takagi, M. Nakamura, M. Yamada et al., “Visualization of peripheral nerve degeneration and regeneration: monitoring with diffusion tensor tractography,” NeuroImage, vol. 44, no. 3, pp. 884–892, 2009.
[8]
J. D. England and A. K. Asbury, “Peripheral neuropathy,” The Lancet, vol. 363, no. 9427, pp. 2151–2161, 2004.
[9]
C. N. Martyn and R. A. C. Hughes, “Epidemiology of peripheral neuropathy,” Journal of Neurology Neurosurgery and Psychiatry, vol. 62, no. 4, pp. 310–318, 1997.
[10]
H. J. Seddon, P. B. Medawar, and H. Smith, “Rate of regeneration of peripheral nerves in man,” The Journal of Physiology, vol. 102, pp. 191–215, 1943.
[11]
S. Sunderland, “A classification of peripheral nerve injuries producing loss of function,” Brain, vol. 74, no. 4, pp. 491–516, 1951.
[12]
K. A. Sheikh, “Non-invasive imaging of nerve regeneration,” Experimental Neurology, vol. 223, no. 1, pp. 72–76, 2010.
[13]
A. Chhabra and G. Andreisek, Magnetic Resonance Neurography, chapter 3, Jaypee, Delhi, India, 1st edition, 2011.
[14]
Z. Ren, Y. Wang, J. Peng, Q. Zhao, and S. Lu, “Role of stem cells in the regeneration and repair of peripheral nerves,” Nature Reviews Neuroscience, vol. 23, no. 2, pp. 135–143, 2012.
[15]
S. Nichterwitz, N. Hoffmann, R. Hajosch, S. Oberhoffner, and B. Schlosshauer, “Bioengineered glial strands for nerve regeneration,” Neuroscience Letters, vol. 484, no. 2, pp. 118–122, 2010.
[16]
U. Mittnacht, H. Hartmann, S. Hein et al., “Chitosan/siRNA nanoparticles biofunctionalize nerve implants and enable neurite outgrowth,” Nano Letters, vol. 10, no. 10, pp. 3933–3939, 2010.
[17]
M. I. Vargas, M. Viallon, D. Nguyen, J. Y. Beaulieu, J. Delavelle, and M. Becker, “New approaches in imaging of the brachial plexus,” European Journal of Radiology, vol. 74, no. 2, pp. 403–410, 2010.
[18]
A. Chhabra, P. P. Lee, C. Bizzell, and T. Soldatos, “3 Tesla MR neurography—technique, interpretation, and pitfalls,” Skeletal Radiology, vol. 40, pp. 1249–1260, 2011.
[19]
R. Gasparotti, S. Ferraresi, L. Pinelli et al., “Three-dimensional MR myelography of traumatic injuries of the brachial plexus,” American Journal of Neuroradiology, vol. 18, no. 9, pp. 1733–1742, 1997.
[20]
A. Chhabra, T. K. Subhawong, C. Bizzell, A. Flammang, and T. Soldatos, “3T MR neurography using three-dimensional diffusion-weighted PSIF: technical issues and advantages,” Skeletal Radiology, vol. 40, no. 10, pp. 1355–1360, 2011.
[21]
T. Takahara, J. Hendrikse, T. Yamashita et al., “Diffusion-weighted MR neurography of the brachial plexus: Feasibility Study,” Radiology, vol. 249, no. 2, pp. 653–660, 2008.
[22]
T. Takahara, T. C. Kwee, J. Hendrikse et al., “Subtraction of unidirectionally encoded images for suppression of heavily isotropic objects (SUSHI) for selective visualization of peripheral nerves,” Neuroradiology, vol. 53, no. 2, pp. 109–116, 2011.
[23]
S. A. Trip, P. G. Schlottmann, S. J. Jones et al., “Optic nerve magnetization transfer imaging and measures of axonal loss and demyelination in optic neuritis,” Multiple Sclerosis, vol. 13, no. 7, pp. 875–879, 2007.
[24]
A. T. Dailey, J. S. Tsuruda, A. G. Filler, K. R. Maravilla, R. Goodkin, and M. Kliot, “Magnetic resonance neurography of peripheral nerve degeneration and regeneration,” The Lancet, vol. 350, no. 9086, pp. 1221–1222, 1997.
[25]
G. A. Grant, G. W. Britz, R. Goodkin, J. G. Jarvik, K. Maravilla, and M. Kliot, “The utility of magnetic resonance imaging in evaluating peripheral nerve disorders,” Muscle and Nerve, vol. 25, no. 3, pp. 314–331, 2002.
[26]
A. G. Filler, F. A. Howe, C. E. Hayes et al., “Magnetic resonance neurography,” The Lancet, vol. 341, no. 8846, pp. 659–661, 1993.
[27]
A. Tagliafico, M. Calabrese, M. Puntoni et al., “Brachial plexus MR imaging: accuracy and reproducibility of DTI-derived measurements and fibre tractography at 3. 0-T2011,” European Radiology, vol. 21, no. 8, pp. 1764–1771, 2011.
[28]
A. Mallouhi, W. Marik, D. Prayer, F. Kainberger, G. Bodner, and G. Kasprian, “3 T MR tomography of the brachial plexus: structural and microstructural evaluation,” European Journal of Radiology, vol. 81, no. 9, pp. 2231–2245, 2012.
[29]
G. Andreisek, L. M. White, A. Kassner, and M. S. Sussman, “Evaluation of diffusion tensor imaging and fiber tractography of the median nerve: preliminary results on intrasubject variability and precision of measurements,” American Journal of Roentgenology, vol. 194, no. 1, pp. W65–W72, 2010.
[30]
A. Kido, M. Kataoka, A. Yamamoto et al., “Diffusion tensor MRI of the kidney at 3.0 and 1.5 Tesla,” Acta Radiologica, vol. 51, no. 9, pp. 1059–1063, 2010.
[31]
G. Andreisek, L. M. White, A. Kassner, G. Tomlinson, and M. S. Sussman, “Diffusion tensor imaging and fiber tractography of the median nerve at 1.5T: optimization of b value,” Skeletal Radiology, vol. 38, no. 1, pp. 51–59, 2009.
[32]
C. Khalil, J. F. Budzik, E. Kermarrec, V. Balbi, V. Le Thuc, and A. Cotten, “Tractography of peripheral nerves and skeletal muscles,” European Journal of Radiology, vol. 76, no. 3, pp. 391–397, 2010.
[33]
H. C. Lehmann, J. Zhang, S. Mori, and K. A. Sheikh, “Diffusion tensor imaging to assess axonal regeneration in peripheral nerves,” Experimental Neurology, vol. 223, no. 1, pp. 238–244, 2010.
[34]
D. Stein, A. Neufeld, O. Pasternak et al., “Diffusion tensor imaging of the median nerve in healthy and carpal tunnel syndrome subjects,” Journal of Magnetic Resonance Imaging, vol. 29, no. 3, pp. 657–662, 2009.
[35]
A. Chhabra, R. S. Thakkar, A. Gustav, et al., “Anatomic MR imaging and functional diffusion tensor imaging of peripheral nerve tumor and tumor like conditions,” American Journal of Neuroradiology. In press.
[36]
G. Gambarota, G. Krueger, N. Theumann, and R. Mekle, “Magnetic resonance imaging of peripheral nerves: differences in magnetization transfer,” Muscle & Nerve, vol. 45, no. 1, pp. 13–17, 2012.
[37]
T. Button, D. Altmann, D. Tozer et al., “Magnetization transfer imaging in multiple sclerosis treated with alemtuzumab,” Multiple Sclerosis, vol. 19, no. 2, pp. 241–244, 2013.
[38]
P. D. Brash, J. Foster, W. Vennart, P. Anthony, and J. E. Tooke, “Magnetic resonance imaging techniques demonstrate soft tissue damage in the diabetic foot,” Diabetic Medicine, vol. 16, no. 1, pp. 55–61, 1999.
[39]
C. D. J. Sinclair, J. M. Morrow, M. G. Hanna et al., “Correcting radiofrequency inhomogeneity effects in skeletal muscle magnetisation transfer maps,” NMR in Biomedicine, vol. 25, no. 2, pp. 262–270, 2012.
[40]
J. D. McDaniel, J. L. Ulmer, R. W. Prost et al., “Magnetization transfer imaging of skeletal muscle in autosomal recessive limb girdle muscular dystrophy,” Journal of Computer Assisted Tomography, vol. 23, no. 4, pp. 609–614, 1999.
[41]
C. D. Sinclair, J. M. Morrow, M. A. Miranda et al., “Skeletal muscle MRI magnetisation transfer ratio reflects clinical severity in peripheral neuropathies,” Journal of Neurology, Neurosurgery & Psychiatry, vol. 83, no. 1, pp. 29–32, 2012.
[42]
K. R. Maravilla, B. D. L. Aagaard, and M. Kliot, “MR Neurography: MR imaging of peripheral nerves,” Magnetic Resonance Imaging Clinics of North America, vol. 6, no. 1, pp. 179–194, 1998.
[43]
K. Rowshan, S. Hadley, K. Pham, V. Caiozzo, T. Q. Lee, and R. Gupta, “Development of fatty atrophy after neurologic and rotator cuff injuries in an animal model of rotator cuff pathology,” Journal of Bone and Joint Surgery A, vol. 92, no. 13, pp. 2270–2278, 2010.
[44]
T. A. Bley, O. Wieben, C. J. Fran?ois, J. H. Brittain, and S. B. Reeder, “Fat and water magnetic resonance imaging,” Journal of Magnetic Resonance Imaging, vol. 31, no. 1, pp. 4–18, 2010.
[45]
C. Boesch, J. Machann, P. Vermathen, and F. Schick, “Role of proton MR for the study of muscle lipid metabolism,” NMR in Biomedicine, vol. 19, no. 7, pp. 968–988, 2006.
[46]
C. Boesch, “Musculoskelatal spectroscopy,” Journal of Magnetic Resonance Imaging, vol. 25, no. 2, pp. 321–338, 2007.
[47]
M. D. Noseworthy, A. D. Davis, and A. H. Elzibak, “Advanced MR imaging techniques for skeletal muscle evaluation,” Seminars in Musculoskeletal Radiology, vol. 14, no. 2, pp. 257–268, 2010.
[48]
N. Saupe, L. M. White, M. S. Sussman, A. Kassner, G. Tomlinson, and M. D. Noseworthy, “Diffusion tensor magnetic resonance imaging of the human calf: comparison between 1.5 t and 3.0 t-preliminary results,” Investigative Radiology, vol. 43, no. 9, pp. 612–618, 2008.
[49]
T. Takahara, Y. Imai, T. Yamashita, S. Yasuda, S. Nasu, and M. Van Cauteren, “Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display,” Radiation Medicine—Medical Imaging and Radiation Oncology, vol. 22, no. 4, pp. 275–282, 2004.
[50]
A. Chhabra and J. Blakely, “Whole-body imaging in schwannomatosis,” Neurology, vol. 76, no. 23, article 2035, 2011.
[51]
T. Yamashita, T. C. Kwee, and T. Takahara, “Whole-body magnetic resonance neurography,” The New England Journal of Medicine, vol. 361, no. 5, pp. 538–539, 2009.
[52]
C. Wessig, M. Bendszus, and G. Stoll, “In vivo visualization of focal demyelination in peripheral nerves by gadofluorine M-enhanced magnetic resonance imaging,” Experimental Neurology, vol. 204, no. 1, pp. 14–19, 2007.
[53]
M. Bendszus, C. Wessig, A. Schütz et al., “Assessment of nerve degeneration by Gadofluorine M-enhanced magnetic resonance imaging,” Annals of Neurology, vol. 57, no. 3, pp. 388–395, 2005.
[54]
M. Bendszus and G. Stoll, “Caught in the act: in vivo mapping of macrophage infiltration in nerve injury by magnetic resonance imaging,” Journal of Neuroscience, vol. 23, no. 34, pp. 10892–10896, 2003.
[55]
C. Witzel, C. Rohde, and T. M. Brushart, “Pathway sampling by regenerating peripheral axons,” Journal of Comparative Neurology, vol. 485, no. 3, pp. 183–190, 2005.
[56]
A. J. R. Macfarlane, B. D. Sites, V. R. Sites et al., “Musculoskeletal sonopathology and ultrasound-guided regional anesthesia,” HSS Journal, vol. 7, no. 1, pp. 64–71, 2011.
[57]
J. A. Carrino and R. Blanco, “Magnetic resonance-guided musculoskeletal interventional radiology,” Seminars in Musculoskeletal Radiology, vol. 10, no. 2, pp. 159–173, 2006.
[58]
T. C. Dickey, R. Tych, M. Kliot, J. D. Loeser, K. Pederson, and P. D. Mourad, “Intense focused ultrasound can reliably induce sensations in human test subjects in a manner correlated with the density of their mechanoreceptors,” Ultrasound in Medicine & Biology, vol. 38, no. 1, pp. 85–90, 2012.