Imaging plays a critical role in the evaluation of a number of facial nerve disorders. The facial nerve has a complex anatomical course; thus, a thorough understanding of the course of the facial nerve is essential to localize the sites of pathology. Facial nerve dysfunction can occur from a variety of causes, which can often be identified on imaging. Computed tomography and magnetic resonance imaging are helpful for identifying bony facial canal and soft tissue abnormalities, respectively. Ultrasound of the facial nerve has been used to predict functional outcomes in patients with Bell’s palsy. More recently, diffusion tensor tractography has appeared as a new modality which allows three-dimensional display of facial nerve fibers. 1. Introduction Imaging plays an important role in the evaluation of facial nerve disorders. The facial nerve has a complex anatomical course, and dysfunction can be due to congenital, inflammatory, infectious, traumatic, and neoplastic etiologies. Computed tomography is useful for identifying bony abnormalities of the intratemporal facial nerve, which can occur with congenital malformations, trauma, and cholesteatoma. Magnetic resonance imaging (MRI) is useful for identifying soft tissue abnormalities around the facial nerve, as seen in inflammatory disorders, neoplasms, and hemifacial spasm. Facial nerve ultrasound has been used in a recent study to predict functional outcomes in Bell’s palsy [1]. Diffusion tensor (DT) tractography, which uses MRI to make three-dimensional (3D) reconstructions of the facial nerve, has recently been developed. This technique has been shown to be potentially useful in the identification displacement of cranial nerve fibers by vestibular schwannomas [2]. In all cases, choice of the imaging modality utilized should be determined by specifics of the patient’s symptoms and the differential diagnosis. In this paper we describe the development and anatomy of the facial nerve, then radiographic techniques used in facial nerve evaluation, and finally the pathologic entities that affect the facial nerve. 2. Development and Anatomy of the Facial Nerve The facial nerve is composed of motor, sensory, and parasympathetic fibers. Complete separation of the facial and acoustic nerves and development of the nervus intermedius (or nerve of Wrisberg) occurs by 6 weeks of gestation. By the 16th week, the neural connections are completely developed. The bony facial canal develops until birth, enclosing the facial nerve in bone throughout its course except at the facial hiatus (the site of the geniculate
References
[1]
Y. L. Lo, S. Fook-Chong, T. H. Leoh et al., “High-resolution ultrasound in the evaluation and prognosis of Bell's palsy,” European Journal of Neurology, vol. 17, no. 6, pp. 885–889, 2010.
[2]
T. Taoka, H. Hirabayashi, H. Nakagawa et al., “Displacement of the facial nerve course by vestibular schwannoma: preoperative visualization using diffusion tensor tractography,” Journal of Magnetic Resonance Imaging, vol. 24, no. 5, pp. 1005–1010, 2006.
[3]
P. Raghavan, S. Mukherjee, and C. D. Phillips, “Imaging of the facial nerve,” Neuroimaging Clinics of North America, vol. 19, no. 3, pp. 407–425, 2009.
[4]
A. Cisneros, J. R. W. Orozco, J. A. O. Nogues et al., “Development of the stapedius muscle canal and its possible clinical consequences,” International Journal of Pediatric Otorhinolaryngology, vol. 75, no. 2, pp. 277–281, 2011.
[5]
L. Liu, R. Arnold, and M. Robinson, “Dissection and exposure of the whole course of deep nerves in human head specimens after decalcification,” International Journal of Otolaryngology, vol. 2012, Article ID 418650, 7 pages, 2012.
[6]
M. May and B. M. Schaitkin, The Facial Nerve, Thieme, New York, NY, USA, Second edition, 2000.
[7]
H. D. Curtin, P. C. Sanelli, and P. M. Som, “Chapter 19 temporal bone: embryology and anatomy,” in Head and Neck Imaging, P. M. Som and H. D. Curtin, Eds., vol. 2, Mosby, St. Louis, Mo, USA, 4th edition, 2003.
[8]
K. Al-Noury and A. Lotfy, “Normal and pathological findings for the facial nerve on magnetic resonance imaging,” Clinical Radiology, vol. 66, no. 8, pp. 701–707, 2011.
[9]
L. J?ger and M. Reiser, “CT and MR imaging of the normal and pathologic conditions of the facial nerve,” European Journal of Radiology, vol. 40, no. 2, pp. 133–146, 2001.
[10]
F. Veillon, L. Ramos-Taboada, M. Abu-Eid, A. Charpiot, and S. Riehm, “Imaging of the facial nerve,” European Journal of Radiology, vol. 74, no. 2, pp. 341–348, 2010.
[11]
S. C. Crawford, H. R. Harnsberger, and J. D. Swartz, “Chapter 7: the facial nerve (cranial nerve VII),” in Imaging of the Temporal Bone, J. D. Swartz and H. R. Harnsberger, Eds., Thieme, New York, NY, USA, 1998.
[12]
G. T. Nager and B. Proctor, “Anatomic variations and anomalies involving the facial canal,” Otolaryngologic Clinics of North America, vol. 24, no. 3, pp. 531–553, 1991.
[13]
R. F. Yellon and B. F. Branstetter, “Prospective blinded study of computed tomography in congenital aural atresia,” International Journal of Pediatric Otorhinolaryngology, vol. 74, no. 11, pp. 1286–1291, 2010.
[14]
X. Mu, Y. Quan, J. Shao, J. Li, H. Wang, and R. Gong, “Enlarged geniculate ganglion fossa: CT sign of facial nerve canal fracture,” Academic Radiology, vol. 19, no. 8, pp. 971–976, 2012.
[15]
J. R. Brodsky, T. W. Smith, S. Litofsky, and D. J. Lee, “Lipoma of the cerebellopontine angle,” American Journal of Otolaryngology, vol. 27, no. 4, pp. 271–274, 2006.
[16]
B. Isaacson, S. A. Telian, P. E. McKeever, and H. A. Arts, “Hemangiomas of the geniculate ganglion,” Otology and Neurotology, vol. 26, no. 4, pp. 796–802, 2005.
[17]
B. De Foer, J. P. Vercruysse, M. Spaepen et al., “Diffusion-weighted magnetic resonance imaging of the temporal bone,” Neuroradiology, vol. 52, no. 9, pp. 785–807, 2010.
[18]
E. Yorgancilar, M. Yildirim, R. Gun, et al., “Complications of chronic suppurative otitis media: a retrospective review,” European Archives of Oto-Rhino-Laryngology, vol. 270, no. 1, pp. 69–76, 2013.
[19]
D. Q. Chen, J. Quan, A. Guha, M. Tymianski, D. Mikulis, and M. Hodaie, “Three-dimensional in vivo modeling of vestibular schwannomas and surrounding cranial nerves with diffusion imaging tractography,” Neurosurgery, vol. 68, no. 4, pp. 1077–1083, 2011.
[20]
P. G. Kennedy, “Herpes simplex virus type 1 and Bell's palsya current assessment of the controversy,” Journal of NeuroVirology, vol. 16, no. 1, pp. 1–5, 2010.
[21]
M. J. Lanser and R. K. Jackler, “Gadolinium magnetic resonance imaging in Bell's palsy,” Western Journal of Medicine, vol. 154, no. 6, pp. 718–719, 1991.
[22]
D. Pickuth and S. H. Heywang-Kobrunner, “Neurosarcoidosis: evaluation with MRI,” Journal of Neuroradiology, vol. 27, no. 3, pp. 185–188, 2000.
[23]
B. Vanzieleghem, M. Lemmerling, D. Carton et al., “Lyme disease in a child presenting with bilateral facial nerve palsy: MRI findings and review of the literature,” Neuroradiology, vol. 40, no. 11, pp. 739–742, 1998.
[24]
F. Salvinelli, M. Casale, L. Vitaliana, F. Greco, C. Dianzani, and L. D'Ascanio, “Delayed peripheral facial palsy in the stapes surgery: can it be prevented?” American Journal of Otolaryngology, vol. 25, no. 2, pp. 105–108, 2004.
[25]
G. J. Gianoli, “Viral titers and delayed facial palsy after acoustic neuroma surgery,” Otolaryngology, vol. 127, no. 5, pp. 427–431, 2002.
[26]
D. E. Brackmann, L. M. Fisher, M. Hansen, A. Halim, and W. H. Slattery, “The effect of famciclovir on delayed facial paralysis after acoustic tumor resection,” Laryngoscope, vol. 118, no. 9, pp. 1617–1620, 2008.
[27]
H. T. F. M. Verzijl, J. Valk, R. De Vries, and G. W. Padberg, “Radiologic evidence for absence of the facial nerve in M?bius syndrome,” Neurology, vol. 64, no. 5, pp. 849–855, 2005.
[28]
I. E. Silverman, G. T. Liu, N. J. Volpe, and S. L. Galetta, “The crossed paralyses. The original brain-stem syndromes of Millard-Gubler, Foville, Weber, and Raymond-Cestan,” Archives of Neurology, vol. 52, no. 6, pp. 635–638, 1995.
[29]
E. Eggenberger, “Eight-and-a-half syndrome: one-and-a-half syndrome plus cranial nerve VII palsy,” Journal of Neuro-Ophthalmology, vol. 18, no. 2, pp. 114–116, 1998.
[30]
V. Saia and L. Pantoni, “Progressive stroke in pontine infarction,” Acta Neurologica Scandinavica, vol. 120, no. 4, pp. 213–215, 2009.
[31]
C. Bassetti, J. Bogousslavsky, A. Barth, and F. Regli, “Isolated infarcts of the pons,” Neurology, vol. 46, no. 1, pp. 165–175, 1996.
[32]
L. Cattaneo, E. Saccani, P. De Giampaulis, G. Crisi, and G. Pavesi, “Central facial palsy revisited: a clinical-radiological study,” Annals of Neurology, vol. 68, no. 3, pp. 404–408, 2010.
[33]
J. Y. S. Kim, “Facial nerve parlaysis,” in Medscape Reference, D. Narayan, Ed., 2012.
[34]
L. M. Nentwich and W. Veloz, “Neuroimaging in acute stroke,” in Emergency Medicine Clinics of North America, vol. 30, pp. 659–680, 2012.
[35]
B. R. Spencer Jr. and K. B. Digre, “Treatments for neuro-ophthalmologic conditions,” Neurologic Clinics, vol. 28, no. 4, pp. 1005–1035, 2010.
[36]
D. Boghen, V. Tozlovanu, A. Iancu, and R. Forget, “Botulinum toxin therapy for apraxia of lid opening,” Annals of the New York Academy of Sciences, vol. 956, pp. 482–483, 2002.
[37]
N. Ahmadi, K. Newkirk, and H. J. Kim, “Facial nerve hemangioma: a rare case involving the vertical segment,” Laryngoscope, vol. 123, no. 2, pp. 499–502, 2013.
[38]
O. Friedman, B. A. Neff, T. O. Willcox, L. C. Kenyon, and R. T. Sataloff, “Temporal bone hemangiomas involving the facial nerve,” Otology and Neurotology, vol. 23, no. 5, pp. 760–766, 2002.
[39]
J. Kunzel, J. Zenk, M. Koch, J. Hornung, and H. Iro, “Paraganglioma of the facial nerve, a rare differential diagnosis for facial nerve paralysis: case report and review of the literature,” European Archives of Oto-Rhino-Laryngology, vol. 269, no. 2, pp. 693–698, 2012.
[40]
A. S. Garden, R. S. Weber, W. H. Morrison, K. K. Ang, and L. J. Peters, “The influence of positive margins and nerve invasion in adenoid cystic carcinoma of the head and neck treated with surgery and radiation,” International Journal of Radiation Oncology Biology Physics, vol. 32, no. 3, pp. 619–626, 1995.
[41]
C. M. Malata, I. G. Camilleri, N. R. McLean et al., “Malignant tumours of the parotid gland: a 12-year review,” British Journal of Plastic Surgery, vol. 50, no. 8, pp. 600–608, 1997.