Purpose. The objective of this study was to determine the estimated effective radiation dose of pulmonary CT angiography (CTA) for suspected pulmonary embolism (PE) contributing to total medical radiation exposure over a 4-year period. Materials and Methods. This investigation retrospectively reviewed 300 patients who presented to the emergency department and received a pulmonary CTA scan for suspected PE. We evaluated these patients' electronic medical record to determine their estimated radiation exposure to CT scans during the following four years. Using DLP to E conversion coefficients, we calculated the cumulative effective radiation dose each subject received. Results. A total of 900 CT scans were reviewed in this study. Pulmonary CTA delivered an average effective radiation dose of 10.7 ± 2.5?mSv and accounted for approximately 65% of subjects' 4-year cumulative medical radiation dose. Only 6.3% of subjects had a positive acute PE according to their radiology report. Conclusion. Pulmonary CTA accounted for the majority of subjects’ medically related effective radiation dose over a 4-year period. With only a minority of subjects having positive findings for acute PE, increased efforts should be made to clinically assess pretest probability before the consideration of imaging. 1. Introduction Pulmonary embolism (PE) is a significant cause of morbidity and mortality. In the United States, PE affects nearly 600,000 individuals and may result in approximately 100,000 deaths per year [1]. Presently, computed tomography (CT) angiography (CTA) has largely replaced the ventilation/perfusion (V/Q) lung scan and catheter pulmonary angiography for the diagnosis of PE due to its accessibility, reliability, and noninvasiveness [2–5]. However, only a minority of CTA scans ordered for suspected PE yield positive findings [1, 5–7]. The PIOPED II multicenter trial has also shown that this test is not as sensitive or specific as previously reported [8]. The health risks associated with medical imaging may increase as the cumulative radiation dose accumulates over a lifetime. Certain factors such as patient age, gender, and fractionation of radiation impact the potential injury from radiographic imaging. A CTA scan delivers an effective radiation dose of approximately 10?mSv [9]. Several controversial studies have attempted to estimate the cumulative carcinogenic risk from medical imaging. Exposure to ionizing radiation from CT has been estimated to be responsible for as many as 29,000 malignancies in the United States annually [10]. Brenner et al. report that a
References
[1]
Office of the Surgeon General, “Acting surgeon general issues ‘call to action to prevent deep vein thrombosis and pulmonary embolism’,” September 2008, http://www.surgeongeneral.gov/news/pressreleases/pr20080915.html.
[2]
M. M. Haap, S. Gatidis, M. Horger, R. Riessen, H. Lehnert, and C. S. Haas, “Computed tomography angiography in patients with suspected pulmonary embolism-too often considered?” American Journal of Emergency Medicine, vol. 30, no. 2, pp. 325–330, 2012.
[3]
G. C. Velmahos, P. Vassiliu, A. Wilcox et al., “Spiral computed tomography for the diagnosis of pulmonary embolism in critically ill surgical patients: a comparison with pulmonary angiography,” Archives of Surgery, vol. 136, no. 5, pp. 505–510, 2001.
[4]
D. R. Anderson and D. C. Barnes, “Computerized tomographic pulmonary angiography versus ventilation perfusion lung scanning for the diagnosis of pulmonary embolism,” Current Opinion in Pulmonary Medicine, vol. 15, no. 5, pp. 425–429, 2009.
[5]
J. He, F. Wang, H. J. Dai et al., “Chinese multi-center study of lung scintigraphy and CT pulmonary angiography for the diagnosis for pulmonary embolism,” The International Journal of Cardiovascular Imaging, vol. 28, no. 7, pp. 1799–1805, 2012.
[6]
C. W. Eng, G. Wansaicheong, S. K. J. Goh, A. Earnest, and C. Sum, “Exclusion of acute pulmonary embolism: computed tomography pulmonary angiogram or D-dimer?” Singapore Medical Journal, vol. 50, no. 4, pp. 403–406, 2009.
[7]
M. M. Costantino, G. Randall, M. Gosselin, M. Brandt, K. Spinning, and C. D. Vegas, “CT angiography in the evaluation of acute pulmonary embolus,” American Journal of Roentgenology, vol. 191, no. 2, pp. 471–474, 2008.
[8]
P. D. Stein, S. E. Fowler, L. R. Goodman et al., “PIOPED II Investigators. Multidetector computed tomography for acute pulmonary embolism,” The New England Journal of Medicine, vol. 354, no. 22, pp. 2317–2327, 2006.
[9]
R. Smith-Bindman, J. Lipson, R. Marcus et al., “Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer,” Archives of Internal Medicine, vol. 169, no. 22, pp. 2078–2086, 2009.
[10]
G. A. Berrington de, M. Mahesh, K. Kim et al., “Projected cancer risks from computed tomographic scans performed in the United States in 2007,” Archives of Internal Medicine, vol. 169, no. 22, pp. 2071–2077, 2009.
[11]
D. J. Brenner, R. Doll, D. T. Goodhead et al., “Cancer risks attributable to low doses of ionizing radiation: assessing what we really know,” Proceedings of the National Academy of Sciences, vol. 100, no. 24, pp. 13761–13766, 2003.
[12]
P. Shrimpton, “Assessment of patient dose in CT,” in EUR. European Guidelines for Multislice Computed Tomography Funded By the European Commission 2004, contract number FIGMCT2000-20078-CTTIP, Appendix C, European Commission, Luxembourg.
[13]
National Council on Radiation Protection and Measurements, “Ionizing radiation exposure of the population of the United States,” NCRP Report 160, NCRP, Bethesda, Md, USA, 2009.
[14]
P. Cronin, J. G. Weg, and E. A. Kazerooni, “The role of multidetector computed tomography angiography for the diagnosis of pulmonary embolism,” Seminars in Nuclear Medicine, vol. 38, no. 6, pp. 418–431, 2008.
[15]
R. Smith-Bindman, “Is computed tomography safe?” The New England Journal of Medicine, vol. 363, no. 1, pp. 1–4, 2010.
[16]
J. K. Woo, R. Y. Chiu, Y. Thakur, and J. R. Mayo, “Risk-benefit analysis of pulmonary CT angiography in patients with suspected pulmonary embolus,” American Journal of Roentgenology, vol. 198, no. 6, pp. 1332–1339, 2012.
[17]
F. Dentali, W. Ageno, C. Becattini et al., “Prevalence and clinical history of incidental, asymptomatic pulmonary embolism: a meta-analysis,” Thrombosis Research, vol. 125, no. 6, pp. 518–522, 2010.
[18]
M. L. Storto, A. Di Credico, F. Guido, A. R. Larici, and L. Bonomo, “Incidental detection of pulmonary emboli on routine MDCT of the chest,” American Journal of Roentgenology, vol. 184, no. 1, pp. 264–267, 2005.
[19]
D. S. Huckins, L. L. Price, and K. Gilley, “Utilization and yield of chest computed tomographic angiography associated with low positive D-dimer levels,” The Journal of Emergency Medicine, vol. 43, no. 2, pp. 211–220, 2011.
[20]
C. R. Krestan, N. Klein, D. Fleischmann et al., “Value of negative spiral CT angiography in patients with suspected acute PE: analysis of PE occurrence and outcome,” European Radiology, vol. 14, no. 1, pp. 93–98, 2004.
[21]
P. S. Wells, D. R. Anderson, M. Rodger et al., “Derivation of a simple clinical model to categorize patients probability of pulmonary embolism: increasing the models utility with the SimpliRED D-dimer,” Thrombosis and Haemostasis, vol. 83, no. 3, pp. 416–420, 2000.
[22]
G. Sadigh, A. M. Kelly, and P. Cronin, “Challenges, controversies, and hot topics in pulmonary embolism imaging,” American Journal of Roentgenology, vol. 196, no. 3, pp. 497–515, 2011.
[23]
L. H. Gimber, T. R. Ing, J. M. Takahashi, T. L. Goodman, and H. C. Yoon, “Computed tomography angiography in patients evaluated for acute pulmonary embolism with low serum D-dimer levels: a prospective study,” The Permanente Journal, vol. 13, no. 4, pp. 4–10, 2009.
[24]
S. Yasuoka and S. Kubota, “The value of blood D-dimer test in the diagnosis of walk-in patients with venous thromboembolism,” Vascular health and risk management, vol. 7, pp. 125–127, 2011.
[25]
H. Nomura, H. Wada, T. Mizuno et al., “Negative predictive value of D-dimer for diagnosis of venous thromboembolism,” International Journal of Hematology, vol. 87, no. 3, pp. 250–255, 2008.
[26]
M. Righini, A. Perrier, P. De Moerloose, and H. Bounameaux, “D-Dimer for venous thromboembolism diagnosis: 20 years later,” Journal of Thrombosis and Haemostasis, vol. 6, no. 7, pp. 1059–1071, 2008.
[27]
G. Shih, Z. F. Lu, R. Zabih et al., “Automated framework for digital radiation dose index reporting from CT dose reports,” American Journal of Roentgenology, vol. 197, no. 5, pp. 1170–1174, 2011.