全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Changes in Renal Function in Elderly Patients Following Intravenous Iodinated Contrast Administration: A Retrospective Study

DOI: 10.1155/2014/459583

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background. Contrast-induced nephropathy (CIN) is a recognised complication of intravascular administration of iodinated contrast media (ICM). Previous studies suggest a higher incidence in the elderly, but no large study has assessed this to date. We set out to assess changes in creatinine in elderly inpatients following computed tomography (CT) examination and compare those who received intravenous contrast to those who did not. Methods. Using the Radiology Information System in two teaching hospitals, inpatients over the age of seventy who had a CT examination and a baseline creatinine were identified and their follow-up creatinine levels were analysed. Elderly inpatients who underwent a noncontrast CT over the same period were used as controls. Results. 677 elderly inpatients who received ICM were compared with 487 controls. 9.2% of patients who received ICM developed acute kidney injury (AKI) compared to 3.5% of inpatient controls ( ). Patients with higher baseline eGFR had a higher incidence of post-CT AKI. Conclusions. The incidence of post-CT AKI is higher in patients who received IV ICM compared to those who did not; the difference may be partly attributable to contrast-induced nephropathy. This suggests that the incidence of CIN in the elderly may not be as high as previously thought. 1. Background Intravascular administration of iodinated contrast media (ICM) is used in a variety of diagnostic and therapeutic procedures. While ICM are generally safe, only resulting in minor side effects, they can result acute renal impairment known as contrast induced nephropathy (CIN) [1]. The majority of cases of CIN are self-limiting, although occasionally chronic renal failure ensues necessitating long-term renal replacement. Even when transient, CIN is associated with increased length of hospital stay and significant morbidity [1, 2]. Diabetes mellitus, preexisting renal failure, congestive heart failure, and hypotension, dehydration as well as the use of ACE inhibitors, diuretics, and nonsteroidal anti-inflammatory drugs have all been identified as important risk factors for developing CIN [3, 4]. Hydration in high-risk patients remains the most important preventative measure [5, 6]. Many attempts at defining CIN exist, but the most widely accepted definition is a 25% rise in serum creatinine concentration from baseline or an absolute increase by 44?μmol/L over the 48 to 72 hours following ICM administration, once other causes of renal impairment have been excluded [2, 4]. The use of CT in clinical medicine has exponentially increased over the past two

References

[1]  P. Parfrey, “The clinical epidemiology of contrast-induced nephropathy,” CardioVascular and Interventional Radiology, vol. 28, supplement 2, pp. S3–S11, 2005.
[2]  J. Richenberg, “How to reduce nephropathy following contrast-enhanced CT: a lesson in policy implementation,” Clinical Radiology, vol. 67, no. 12, pp. 1136–1145, 2012.
[3]  P. A. McCullough and K. R. Sandberg, “Epidemiology of contrast-induced nephropathy,” Reviews in Cardiovascular Medicine, vol. 4, supplement 5, pp. S3–S9, 2003.
[4]  R. Mehran and E. Nikolsky, “Contrast-induced nephropathy: definition, epidemiology, and patients at risk,” Kidney International, vol. 69, supplement 100, pp. S11–S15, 2006.
[5]  C. E. A. Balemans, L. J. M. Reichert, B. I. H. van Schelven, J. A. J. G. van den Brand, and J. F. M. Wetzels, “Epidemiology of contrast material-induced nephropathy in the era of hydration,” Radiology, vol. 263, no. 3, pp. 706–713, 2012.
[6]  Acute Kidney Injury, http://www.renal.org/clinical/guidelinessection/AcuteKidneyInjury.aspx.
[7]  S. L. Chen, J. Zhang, F. Yei et al., “Clinical outcomes of contrast-induced nephropathy in patients undergoing percutaneous coronary intervention: a prospective, multicenter, randomized study to analyze the effect of hydration and acetylcysteine,” International Journal of Cardiology, vol. 126, no. 3, pp. 407–413, 2008.
[8]  R. Mehran, E. D. Aymong, E. Nikolsky et al., “A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: development and initial validation,” Journal of the American College of Cardiology, vol. 44, no. 7, pp. 1393–1399, 2004.
[9]  A. M. Mitchell, A. E. Jones, J. A. Tumlin, and J. A. Kline, “Prospective study of the incidence of contrast-induced nephropathy among patients evaluated for pulmonary embolism by contrast-enhanced computed tomography,” Academic Emergency Medicine, vol. 19, no. 6, pp. 618–625, 2012.
[10]  M. J. Laugharne, M. Paravasthu, A. Preston, and K. O. Hill, “CT pulmonary angiography in elderly patients: Outcomes in patients aged >85 years,” Clinical Radiology, vol. 68, no. 5, pp. 449–454, 2013.
[11]  F. G. Brivet, D. J. Kleinknecht, P. Loirat, and P. J. M. Landais, “Acute renal failure in intensive care units—causes, outcome, and prognostic factors of hospital mortality: a prospective, multicenter study,” Critical Care Medicine, vol. 24, no. 2, pp. 192–198, 1996.
[12]  S. S. Waikar, K. D. Liu, and G. M. Chertow, “Diagnosis, epidemiology and outcomes of acute kidney injury,” Clinical Journal of the American Society of Nephrology, vol. 3, no. 3, pp. 844–861, 2008.
[13]  K. Nash, A. Hafeez, and S. Hou, “Hospital-acquired renal insufficiency,” The American Journal of Kidney Diseases, vol. 39, no. 5, pp. 930–936, 2002.
[14]  Acute Kidney Injury, http://www.renal.org/guidelines/modules.
[15]  R. J. McDonald, J. S. McDonald, J. P. Bida et al., “Intravenous contrast material-induced nephropathy: causal or coincident phenomenon?” Radiology, vol. 267, no. 1, pp. 106–118, 2013.
[16]  J. S. McDonald, R. J. McDonald, J. Comin et al., “Frequency of acute kidney injury following intravenous contrast medium administration: a systematic review and meta-analysis,” Radiology, vol. 267, no. 1, pp. 119–128, 2013.
[17]  M. S. Davenport, S. Khalatbari, J. R. Dillman, R. H. Cohan, E. M. Caoili, and J. H. Ellis, “Contrast material-induced nephrotoxicity and intravenous low-osmolality iodinated contrast material,” Radiology, vol. 267, no. 1, pp. 94–105, 2013.
[18]  A. S. Levey, T. Greene, J. W. Kusek, G. J. Beck, and M. S. Group, “A simplified equation to predict glomerular filtration rate from serum creatinine,” Journal of the American Society of Nephrology, vol. 11, article A0828, 2000.
[19]  R. J. Bruce, A. Djamali, K. Shinki, S. J. Michel, J. P. Fine, and M. A. Pozniak, “Background fluctuation of kidney function versus contrast-induced nephrotoxicity,” The American Journal of Roentgenology, vol. 192, no. 3, pp. 711–718, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133