全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Relationship between Obstructive Sleep Apnea and Atrial Fibrillation: A Complex Interplay

DOI: 10.1155/2013/621736

Full-Text   Cite this paper   Add to My Lib

Abstract:

In recent years, growing evidence suggests an association between obstructive sleep apnea (OSA), a common sleep breathing disorder which is increasing in prevalence as the obesity epidemic surges, and atrial fibrillation (AF), the most common cardiac arrhythmia. AF is a costly public health problem increasing a patient’s risk of stroke, heart failure, and all-cause mortality. It remains unclear whether the association is based on mutual risk factors, such as obesity and hypertension, or whether OSA is an independent risk factor and causative in nature. This paper explores the pathophysiology of OSA which may predispose to AF, clinical implications of stroke risk in this cohort who display overlapping disease processes, and targeted treatment strategies such as continuous positive airway pressure and AF ablation. 1. Introduction Obstructive sleep apnea, a common breathing disorder, is characterized by recurrent episodes of airway collapse resulting in occlusion of airflow during sleep. These episodes of hypopnea and apnea can manifest as transient or prolonged hypoxemia, sleep arousals, and sympathetic nervous system activation, resulting in symptoms such as snoring, headaches, daytime sleepiness, and impaired alertness [1]. Approximately 3–7% percent of the adult population in the United States is affected by OSA, and that number is likely an underestimate as it goes undiagnosed in many cases [2–4]. Another condition which is also prevalent as well as undiagnosed in many circumstances is atrial fibrillation (AF). It is predicted that by 2050, more than 10 million Americans will have AF and possibly up to 16 million if the increase in incidence continues on the same trajectory [5]. The question has been posed, on more than one occasion, how these two common entities of OSA and AF impact one another. Although the relationship between sleep-disordered breathing and arrhythmias was proposed a few decades ago [6], only recently has it been recognized that OSA seems to be correlated with AF (see Table 1) [7–15]. Table 1: Risk of AF in OSA patients. The studies in Table 1 suggest the increased risk of AF in OSA patients, but the quality of the data is limited [7–15]. Known risk factors for AF include age, male gender, smoking, obesity, hypertension, diabetes mellitus, myocardial infarction, congestive heart failure, and cardiac surgery [15]. Of the six studies evaluated in Table 1, only two adjusted for male gender [8, 11], one for hypertension [9], and none controlled for diabetes mellitus, or heart failure [8, 16]. In the Sleep Heart Health Study, Mehra et

References

[1]  S. F. Quan, B. V. Howard, C. Iber et al., “The Sleep Heart Health Study: design, rationale, and methods,” Sleep, vol. 20, no. 12, pp. 1077–1085, 1997.
[2]  N. M. Punjabi, “The epidemiology of adult obstructive sleep apnea,” Proceedings of the American Thoracic Society, vol. 5, no. 2, pp. 136–143, 2008.
[3]  J. R. Stradling and R. J. O. Davies, “Sleep · 1: obstructive sleep apnoea/hypopnoea syndrome: definitions, epidemiology, and natural history,” Thorax, vol. 59, no. 1, pp. 73–78, 2004.
[4]  M. Partinen and H. Palomaki, “Snoring and cerebral infarction,” The Lancet, vol. 2, no. 8468, pp. 1325–1326, 1985.
[5]  Y. Miyasaka, M. E. Barnes, B. J. Gersh et al., “Secular trends in incidence of atrial fibrillation in Olmsted County, Minnesota, 1980 to 2000, and implications on the projections for future prevalence,” Circulation, vol. 114, no. 2, pp. 119–125, 2006.
[6]  C. Guilleminault, S. J. Connolly, and R. A. Winkle, “Cardiac arrhythmia and conduction disturbances during sleep in 400 patients with sleep apnea syndrome,” The American Journal of Cardiology, vol. 52, no. 5, pp. 490–494, 1983.
[7]  A. S. Gami, G. Pressman, S. M. Caples et al., “Association of atrial fibrillation and obstructive sleep apnea,” Circulation, vol. 110, no. 4, pp. 364–367, 2004.
[8]  R. Mehra, E. J. Benjamin, E. Shahar et al., “Association of nocturnal arrhythmias with sleep-disordered breathing: the Sleep Heart Health Study,” American Journal of Respiratory and Critical Care Medicine, vol. 173, no. 8, pp. 910–916, 2006.
[9]  T. Tanigawa, K. Yamagishi, S. Sakurai et al., “Arterial oxygen desaturation during sleep and atrial fibrillation,” Heart, vol. 92, no. 12, pp. 1854–1855, 2006.
[10]  K. Monahan, A. Storfer-Isser, R. Mehra et al., “Triggering of nocturnal arrhythmias by sleep-disordered breathing events,” Journal of the American College of Cardiology, vol. 54, no. 19, pp. 1797–1804, 2009.
[11]  A. S. Gami, D. O. Hodge, R. M. Herges et al., “Obstructive sleep apnea, obesity, and the risk of incident atrial fibrillation,” Journal of the American College of Cardiology, vol. 49, no. 5, pp. 565–571, 2007.
[12]  I. H. Stevenson, H. Teichtahl, D. Cunnington, S. Ciavarella, I. Gordon, and J. M. Kalman, “Prevalence of sleep disordered breathing in paroxysmal and persistent atrial fibrillation patients with normal left ventricular function,” European Heart Journal, vol. 29, no. 13, pp. 1662–1669, 2008.
[13]  B. Braga, D. Poyares, F. Cintra et al., “Sleep-disordered breathing and chronic atrial fibrillation,” Sleep Medicine, vol. 10, no. 2, pp. 212–216, 2009.
[14]  T. Mooe, S. Gullsby, T. Rabben, and P. Eriksson, “Sleep-disordered breathing: a novel predictor of atrial fibrillation after coronary artery bypass surgery,” Coronary Artery Disease, vol. 7, no. 6, pp. 475–478, 1996.
[15]  R. Mehra, K. L. Stone, P. D. Varosy et al., “Nocturnal arrhythmias across a spectrum of obstructive and central sleep-disordered breathing in older men: outcomes of sleep disorders in older men (MrOS sleep) study,” Archives of Internal Medicine, vol. 169, no. 12, pp. 1147–1155, 2009.
[16]  P. Kirchhof, G. Y. Lip, I. C. Van Gelder et al., “Comprehensive risk reduction in patients with atrial fibrillation: emerging diagnostic and therapeutic options—a report from the 3rd Atrial Fibrillation Competence NETwork/European Heart Rhythm Association consensus conference,” Europace, vol. 14, no. 1, pp. 8–27, 2012.
[17]  K. M. Porthan, J. H. Melin, J. T. Kupila, K. K. K. Venho, and M. M. Partinen, “Prevalence of sleep apnea syndrome in lone atrial fibrillation: a case-control study,” Chest, vol. 125, no. 3, pp. 879–885, 2004.
[18]  R. L. Horner, “Pathophysiology of obstructive sleep apnea,” Journal of Cardiopulmonary Rehabilitation and Prevention, vol. 28, no. 5, pp. 289–298, 2008.
[19]  T. D. Bradley and J. S. Floras, “Sleep apnea and heart failure, part I: obstructive sleep apnea,” Circulation, vol. 107, no. 12, pp. 1671–1678, 2003.
[20]  T. D. Bradley, M. J. Hall, S. I. Ando, and J. S. Floras, “Hemodynamic effects of simulated obstructive apneas in humans with and without heart failure,” Chest, vol. 119, no. 6, pp. 1827–1835, 2001.
[21]  V. K. Somers, A. L. Mark, D. C. Zavala, and F. M. Abboud, “Contrasting effects of hypoxia and hypercapnia on ventilation and sympathetic activity in humans,” Journal of Applied Physiology, vol. 67, no. 5, pp. 2101–2106, 1989.
[22]  D. A. Spriggs, J. M. French, J. M. Murdy, R. H. Curless, D. Bates, and O. F. W. James, “Snoring increases the risk of stroke and adversely affects prognosis,” Quarterly Journal of Medicine, vol. 83, no. 303, pp. 555–562, 1992.
[23]  P. E. Peppard, T. Young, M. Palta, and J. Skatrud, “Prospective study of the association between sleep-disordered breathing and hypertension,” The New England Journal of Medicine, vol. 342, no. 19, pp. 1378–1384, 2000.
[24]  F. J. Nieto, T. B. Young, B. K. Lind et al., “Association of sleep-disordered breathing sleep apnea, and hypertension in a large community-based study,” Journal of the American Medical Association, vol. 283, no. 14, pp. 1829–1836, 2000.
[25]  C. W. H. Davies, J. H. Crosby, R. L. Mullins, C. Barbour, R. J. O. Davies, and J. R. Stradling, “Case-control study of 24 hour ambulatory blood pressure in patients with obstructive sleep apnoea and normal matched control subjects,” Thorax, vol. 55, no. 9, pp. 736–740, 2000.
[26]  J. C. T. Pepperell, S. Ramdassingh-Dow, N. Crosthwaite et al., “Ambulatory blood pressure after therapeutic and subtherapeutic nasal continuous positive airway pressure for obstructive sleep apnoea: a randomised parallel trial,” The Lancet, vol. 359, no. 9302, pp. 204–210, 2002.
[27]  I. Cano-Pumarega, J. Duran-Cantolla, F. Aizpuru et al., “Obstructive sleep apnea and systemic hypertension: longitudinal study in the general population: the Vitoria Sleep Cohort,” American Journal of Respiratory and Critical Care Medicine, vol. 184, no. 11, pp. 1299–1304, 2011.
[28]  G. T. O'Connor, B. Caffo, A. B. Newman et al., “Prospective study of sleep-disordered breathing and hypertension: the Sleep Heart Health Study,” American Journal of Respiratory and Critical Care Medicine, vol. 179, no. 12, pp. 1159–1164, 2009.
[29]  H. Palomaki, “Snoring and the risk of ischemic brain infarction,” Stroke, vol. 22, no. 8, pp. 1021–1025, 1991.
[30]  S. Smirne, S. Palazzi, M. Zucconi, S. Chierchia, and L. Ferini-Strambi, “Habitual snoring as a risk factor for acute vascular disease,” European Respiratory Journal, vol. 6, no. 9, pp. 1357–1361, 1993.
[31]  J. P. Neau, J. C. Meurice, J. Paquereau, J. J. Chavagnat, P. Ingrand, and R. Gil, “Habitual snoring as a risk factor for brain infarction,” Acta Neurologica Scandinavica, vol. 92, no. 1, pp. 63–68, 1995.
[32]  G. Parati and P. Lantelme, “Blood pressure variability, target organ damage and cardiovascular events,” Journal of Hypertension, vol. 20, no. 9, pp. 1725–1729, 2002.
[33]  E. Ohga, T. Tomita, H. Wada, H. Yamamoto, T. Nagase, and Y. Ouchi, “Effects of obstructive sleep apnea on circulating ICAM-1, IL-8, and MCP-1,” Journal of Applied Physiology, vol. 94, no. 1, pp. 179–184, 2003.
[34]  L. Dyugovskaya, P. Lavie, and L. Lavie, “Increased adhesion molecules expression and production of reactive oxygen species in leukocytes of sleep apnea patients,” American Journal of Respiratory and Critical Care Medicine, vol. 165, no. 7, pp. 934–939, 2002.
[35]  A. S. M. Shamsuzzaman, M. Winnicki, P. Lanfranchi et al., “Elevated C-reactive protein in patients with obstructive sleep apnea,” Circulation, vol. 105, no. 21, pp. 2462–2464, 2002.
[36]  T. Yokoe, K. Minoguchi, H. Matsuo et al., “Elevated levels of C-reactive protein and interleukin-6 in patients with obstructive sleep apnea syndrome are decreased by nasal continuous positive airway pressure,” Circulation, vol. 107, no. 8, pp. 1129–1134, 2003.
[37]  R. Schulz, S. Mahmoudi, K. Hattar et al., “Enhanced release of superoxide from polymorphonuclear neutrophils in obstructive sleep apnea: impact of continuous positive airway pressure therapy,” American Journal of Respiratory and Critical Care Medicine, vol. 162, no. 2 I, pp. 566–570, 2000.
[38]  A. Malhotra and D. P. White, “Obstructive sleep apnoea,” The Lancet, vol. 360, no. 9328, pp. 237–245, 2002.
[39]  V. K. Somers, D. P. White, R. Amin et al., “Sleep apnea and cardiovascular disease. An American Heart Association/American College of Cardiology Foundation Scientific Statement from the American Heart Association Council for High Blood Pressure Research Professional Education Committee, Council on Clinical Cardiology, Stroke Council, and Council on Cardiovascular Nursing in Collaboration with the National Heart, Lung,” Journal of the American College of Cardiology, vol. 52, no. 8, pp. 686–717, 2008.
[40]  W. T. McNicholas, “Diagnosis of obstructive sleep apnea in adults,” Proceedings of the American Thoracic Society, vol. 5, no. 2, pp. 154–160, 2008.
[41]  F. N. Albuquerque, A. D. Calvin, F. H. S. Kuniyoshi et al., “Sleep-disordered breathing and excessive daytime sleepiness in patients with atrial fibrillation,” Chest, vol. 141, no. 4, pp. 967–973, 2012.
[42]  R. J. O. Davies, N. J. Ali, and J. R. Stradling, “Neck circumference and other clinical features in the diagnosis of the obstructive sleep apnoea syndrome,” Thorax, vol. 47, no. 2, pp. 101–105, 1992.
[43]  D. C. Haas, G. L. Foster, F. J. Nieto et al., “Age-dependent associations between sleep-disordered breathing and hypertension: importance of discriminating between systolic/diastolic hypertension and isolated systolic hypertension in the Sleep Heart Health Study,” Circulation, vol. 111, no. 5, pp. 614–621, 2005.
[44]  P. Lavie, L. Lavie, and P. Herer, “All-cause mortality in males with sleep apnoea syndrome: declining mortality rates with age,” European Respiratory Journal, vol. 25, no. 3, pp. 514–520, 2005.
[45]  M. Arzt, T. Young, L. Finn, J. B. Skatrud, and T. D. Bradley, “Association of sleep-disordered breathing and the occurrence of stroke,” American Journal of Respiratory and Critical Care Medicine, vol. 172, no. 11, pp. 1447–1451, 2005.
[46]  H. Dimitri, M. Ng, A. G. Brooks et al., “Atrial remodeling in obstructive sleep apnea: implications for atrial fibrillation,” Heart Rhythm, vol. 9, no. 3, pp. 321–327, 2012.
[47]  D. H. Lau, L. MacKenzie, D. J. Kelly et al., “Hypertension and atrial fibrillation: evidence of progressive atrial remodeling with electrostructural correlate in a conscious chronically instrumented ovine model,” Heart Rhythm, vol. 7, no. 9, pp. 1282–1290, 2010.
[48]  M. K. Stiles, B. John, C. X. Wong et al., “Paroxysmal lone atrial fibrillation is associated with an abnormal atrial substrate: characterizing the ‘second factor’,” Journal of the American College of Cardiology, vol. 53, no. 14, pp. 1182–1191, 2009.
[49]  V. K. Somers, M. E. Dyken, M. P. Clary, and F. M. Abboud, “Sympathetic neural mechanisms in obstructive sleep apnea,” Journal of Clinical Investigation, vol. 96, no. 4, pp. 1897–1904, 1995.
[50]  V. K. Somers, A. L. Mark, D. C. Zavala, and F. M. Abboud, “Influence of ventilation and hypocapnia on sympathetic nerve responses to hypoxia in normal humans,” Journal of Applied Physiology, vol. 67, no. 5, pp. 2095–2100, 1989.
[51]  B. John, M. K. Stiles, P. Kuklik et al., “Electrical remodelling of the left and right atria due to rheumatic mitral stenosis,” European Heart Journal, vol. 29, no. 18, pp. 2234–2243, 2008.
[52]  E. Varol, S. Akcay, M. Ozaydin, O. Ozturk, S. S. Cerci, and U. Sahin, “Influence of obstructive sleep apnea on left ventricular mass and global function: sleep apnea and myocardial performance index,” Heart and Vessels, vol. 25, no. 5, pp. 400–404, 2010.
[53]  P. Sanders, J. B. Morton, P. M. Kistler et al., “Electrophysiological and electroanatomic characterization of the atria in sinus node disease: evidence of diffuse atrial remodeling,” Circulation, vol. 109, no. 12, pp. 1514–1522, 2004.
[54]  P. Sanders, J. B. Morton, N. C. Davidson et al., “Electrical remodeling of the atria in congestive heart failure: electrophysiological and electroanatomic mapping in humans,” Circulation, vol. 108, no. 12, pp. 1461–1468, 2003.
[55]  M. E. Otto, M. Belohlavek, A. Romero-Corral et al., “Comparison of cardiac structural and functional changes in obese otherwise healthy adults with versus without obstructive sleep apnea,” The American Journal of Cardiology, vol. 99, no. 9, pp. 1298–1302, 2007.
[56]  M. Ha?ssaguerre, P. Ja?s, D. C. Shah et al., “Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins,” The New England Journal of Medicine, vol. 339, no. 10, pp. 659–666, 1998.
[57]  L. F. Drager, L. A. Bortolotto, A. C. Figueiredo, B. C. Silva, E. M. Krieger, and G. Lorenzi-Filho, “Obstructive sleep apnea, hypertension, and their interaction on arterial stiffness and heart remodeling,” Chest, vol. 131, no. 5, pp. 1379–1386, 2007.
[58]  R. Parkash, M. S. Green, C. R. Kerr et al., “The association of left atrial size and occurrence of atrial fibrillation: a prospective cohort study from the Canadian Registry of Atrial Fibrillation,” American Heart Journal, vol. 148, no. 4, pp. 649–654, 2004.
[59]  H. E. Lim, Y. H. Kim, S. H. Kim et al., “Impact of obstructive sleep apnea on the atrial electromechanical activation time,” Circulation Journal, vol. 73, no. 2, pp. 249–255, 2009.
[60]  J. Yagmur, O. Yetkin, M. Cansel et al., “Assessment of atrial electromechanical delay and influential factors in patients with obstructive sleep apnea,” Sleep and Breathing, vol. 16, no. 1, pp. 83–88, 2012.
[61]  A. Noda, T. Okada, F. Yasuma, N. Nakashima, and M. Yokota, “Cardiac hypertrophy in obstructive sleep apnea syndrome,” Chest, vol. 107, no. 6, pp. 1538–1544, 1995.
[62]  K. M. Hla, T. B. Young, T. Bidwell, M. Palta, J. B. Skatrud, and J. Dempsey, “Sleep apnea and hypertension: a population-based study,” Annals of Internal Medicine, vol. 120, no. 5, pp. 382–388, 1994.
[63]  T. Young, P. Peppard, M. Palta et al., “Population-based study of sleep-disordered breathing as a risk factor for hypertension,” Archives of Internal Medicine, vol. 157, no. 15, pp. 1746–1752, 1997.
[64]  M. Niroumand, R. Kuperstein, Z. Sasson, and P. J. Hanly, “Impact of obstructive sleep apnea on left ventricular mass and diastolic function,” American Journal of Respiratory and Critical Care Medicine, vol. 163, no. 7, pp. 1632–1636, 2001.
[65]  A. J. Buda, M. R. Pinsky, N. B. Ingels Jr., G. T. Daughters II, E. B. Stinson, and E. L. Alderman, “Effect of intrathoracic pressure on left ventricular performance,” The New England Journal of Medicine, vol. 301, no. 9, pp. 453–459, 1979.
[66]  M. Orban, C. J. Bruce, G. S. Pressman et al., “Dynamic changes of left ventricular performance and left atrial volume induced by the mueller maneuver in healthy young adults and implications for obstructive sleep apnea, atrial fibrillation, and heart failure,” The American Journal of Cardiology, vol. 102, no. 11, pp. 1557–1561, 2008.
[67]  Y. Koshino, H. R. Villarraga, M. Orban et al., “Changes in left and right ventricular mechanics during the Mueller maneuver in healthy Adults a possible mechanism for abnormal cardiac function in patients with obstructive sleep apnea,” Circulation, vol. 3, no. 3, pp. 282–289, 2010.
[68]  D. Linz, U. Schotten, H. R. Neuberger, M. B?hm, and K. Wirth, “Negative tracheal pressure during obstructive respiratory events promotes atrial fibrillation by vagal activation,” Heart Rhythm, vol. 8, no. 9, pp. 1436–1443, 2011.
[69]  Y. K. Iwasaki, Y. Shi, B. Benito et al., “Determinants of atrial fibrillation in an animal model of obesity and acute obstructive sleep apnea,” Heart Rhythm, vol. 9, no. 9, pp. 1409.e1–1416.e1, 2012.
[70]  H. Kraiczi, K. Caidahl, A. Samuelsson, Y. Peker, and J. Hedner, “Impairment of vascular endothelial function and left ventricular filling: association with the severity of apnea-induced hypoxemia during sleep,” Chest, vol. 119, no. 4, pp. 1085–1091, 2001.
[71]  J. W. H. Fung, T. S. T. Li, D. K. L. Choy et al., “Severe obstructive sleep apnea is associated with left ventricular diastolic dysfunction,” Chest, vol. 121, no. 2, pp. 422–429, 2002.
[72]  R. Kanagala, N. S. Murali, P. A. Friedman et al., “Obstructive sleep apnea and the recurrence of atrial fibrillation,” Circulation, vol. 107, no. 20, pp. 2589–2594, 2003.
[73]  A. Y. Tan, P. S. Chen, L. S. Chen, and M. C. Fishbein, “Autonomic nerves in pulmonary veins,” Heart Rhythm, vol. 4, supplement 3, pp. S57–S60, 2007.
[74]  M. Ghias, B. J. Scherlag, Z. Lu et al., “The role of ganglionated plexi in apnea-related atrial fibrillation,” Journal of the American College of Cardiology, vol. 54, no. 22, pp. 2075–2083, 2009.
[75]  D. Linz, U. Schotten, H. R. Neuberger, M. Bohm, and K. Wirth, “Combined blockade of early and late activated atrial potassium currents suppresses atrial fibrillation in a pig model of obstructive apnea,” Heart Rhythm, vol. 8, no. 12, pp. 1933–1939, 2011.
[76]  E. Anter, P. Zimetbaum, and M. Josephson, “Treatment of obstructive sleep apnea reduces the risk of atrial fibrillation recurrence following catheter ablation,” Journal of the American College of Cardiology, vol. 59, no. 13, supplement 1, pp. E612–E612, 2012.
[77]  H. Abe, M. Takahashi, H. Yaegashi et al., “Efficacy of continuous positive airway pressure on arrhythmias in obstructive sleep apnea patients,” Heart and vessels, vol. 25, no. 1, pp. 63–69, 2010.
[78]  D. Patel, P. Mohanty, L. di Biase et al., “Safety and efficacy of pulmonary vein antral isolation in patients with obstructive sleep apnea: the impact of continuous positive airway pressure,” Circulation, vol. 3, no. 5, pp. 445–451, 2010.
[79]  D. Linz, F. Mahfoud, U. Schotten et al., “Renal sympathetic denervation suppresses postapneic blood pressure rises and atrial fibrillation in a model for sleep apnea,” Hypertension, vol. 60, no. 1, pp. 172–178, 2012.
[80]  R. C. Basner, “Continuous positive airway pressure for obstructive sleep apnea,” The New England Journal of Medicine, vol. 356, no. 17, pp. 1751–1758, 2007.
[81]  R. Tkacova, F. Rankin, F. S. Fitzgerald, J. S. Floras, and T. D. Bradley, “Effects of continuous positive airway pressure on obstructive sleep apnea and left ventricular afterload in patients with heart failure,” Circulation, vol. 98, no. 21, pp. 2269–2275, 1998.
[82]  F. Barbe, J. Duran-Cantolla, M. Sanchez-de-la-Torre et al., “Effect of continuous positive airway pressure on the incidence of hypertension and cardiovascular events in nonsleepy patients with obstructive sleep apnea: a randomized controlled trial,” Journal of the American Medical Association, vol. 307, no. 20, pp. 2161–2168, 2012.
[83]  P. Haentjens, A. van Meerhaeghe, A. Moscariello et al., “The impact of continuous positive airway pressure on blood pressure in patients with obstructive sleep apnea syndrome: evidence from a meta-analysis of placebo-controlled randomized trials,” Archives of Internal Medicine, vol. 167, no. 8, pp. 757–764, 2007.
[84]  K. Monahan and S. Redline, “Role of obstructive sleep apnea in cardiovascular disease,” Current Opinion in Cardiology, vol. 26, no. 6, pp. 541–547, 2011.
[85]  U. Koehler, E. Fus, W. Grimm et al., “Heart block in patients with obstructive sleep apnoea: pathogenetic factors and effects of treatment,” European Respiratory Journal, vol. 11, no. 2, pp. 434–439, 1998.
[86]  C. Y. Ng, T. Liu, M. Shehata, S. Stevens, S. S. Chugh, and X. Wang, “Meta-analysis of obstructive sleep apnea as predictor of atrial fibrillation recurrence after catheter ablation,” The American Journal of Cardiology, vol. 108, no. 1, pp. 47–51, 2011.
[87]  M. Matiello, M. Nadal, D. Tamborero et al., “Low efficacy of atrial fibrillation ablation in severe obstructive sleep apnoea patients,” Europace, vol. 12, no. 8, pp. 1084–1089, 2010.
[88]  K. Chilukuri, D. Dalal, S. Gadrey et al., “A prospective study evaluating the role of obesity and obstructive sleep apnea for outcomes after catheter ablation of atrial fibrillation,” Journal of Cardiovascular Electrophysiology, vol. 21, no. 5, pp. 521–525, 2010.
[89]  R. B. Tang, J. Z. Dong, X. P. Liu et al., “Obstructive sleep apnoea risk profile and the risk of recurrence of atrial fibrillation after catheter ablation,” Europace, vol. 11, no. 1, pp. 100–105, 2009.
[90]  K. Chilukuri, D. Dalal, J. E. Marine et al., “Predictive value of obstructive sleep apnoea assessed by the Berlin Questionnaire for outcomes after the catheter ablation of atrial fibrillation,” Europace, vol. 11, no. 7, pp. 896–901, 2009.
[91]  K. Jongnarangsin, A. Chugh, E. Good et al., “Body mass index, obstructive sleep apnea, and outcomes of catheter ablation of atrial fibrillation,” Journal of Cardiovascular Electrophysiology, vol. 19, no. 7, pp. 668–672, 2008.
[92]  B. Boden-Albala, E. T. Roberts, C. Bazil et al., “Daytime sleepiness and risk of stroke and vascular disease: findings from the Northern Manhattan Study (NOMAS),” Circulation, vol. 5, no. 4, pp. 500–507, 2012.
[93]  S. Redline, G. Yenokyan, D. J. Gottlieb et al., “Obstructive sleep apnea-hypopnea and incident stroke: the Sleep Heart Health Study,” American Journal of Respiratory and Critical Care Medicine, vol. 182, no. 2, pp. 269–277, 2010.
[94]  R. Munoz, J. Duran-Cantolla, E. Martínez-Vila et al., “Severe sleep apnea and risk of ischemic stroke in the elderly,” Stroke, vol. 37, no. 9, pp. 2317–2321, 2006.
[95]  H. K. Yaggi, J. Concato, W. N. Kernan, J. H. Lichtman, L. M. Brass, and V. Mohsenin, “Obstructive sleep apnea as a risk factor for stroke and death,” The New England Journal of Medicine, vol. 353, no. 19, pp. 2034–2041, 2005.
[96]  J. M. Marin, S. J. Carrizo, E. Vicente, and A. G. N. Agusti, “Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: an observational study,” The Lancet, vol. 365, no. 9464, pp. 1046–1053, 2005.
[97]  T. Mooe, K. A. Franklin, K. Holmstr?m, T. Rabben, and U. Wiklund, “Sleep-disordered breathing and coronary artery disease: long-term prognosis,” American Journal of Respiratory and Critical Care Medicine, vol. 164, no. 10 I, pp. 1910–1913, 2001.
[98]  F. B. Hu, W. C. Willett, J. E. Manson et al., “Snoring and risk of cardiovascular disease in women,” Journal of the American College of Cardiology, vol. 35, no. 2, pp. 308–313, 2000.
[99]  S. M. Caples, A Randomized Trial of Positive Airway Pressure Therapy in Atrial Fibrillation Recurrence in Sleep Apnea, National Library of Medicine, Bethesda, Md, USA, 2009.
[100]  A. Baranchuk, Incidence of New Onset Atrial Fibrillation in Patients with Severe Obstructive Sleep Apnea: The Reveal XT-SA Study, National Library of Medicine, Bethesda, Md, USA, 2010.
[101]  A. S. Gami, D. E. Howard, E. J. Olson, and V. K. Somers, “Day-night pattern of sudden death in obstructive sleep apnea,” The New England Journal of Medicine, vol. 352, no. 12, pp. 1206–1214, 2005.
[102]  L. S. Doherty, J. L. Kiely, V. Swan, and W. T. McNicholas, “Long-term effects of nasal continuous positive airway pressure therapy on cardiovascular outcomes in sleep apnea syndrome,” Chest, vol. 127, no. 6, pp. 2076–2084, 2005.
[103]  K. Monahan, J. Brewster, L. Wang et al., “Relation of the severity of obstructive sleep apnea in response to anti-arrhythmic drugs in patients with atrial fibrillation or atrial flutter,” The American Journal of Cardiology, vol. 110, no. 3, pp. 369–372, 2012.
[104]  C. Pappone, S. Rosanio, G. Oreto et al., “Circumferential radiofrequency ablation of pulmonary vein ostia: a new anatomic approach for curing atrial fibrillation,” Circulation, vol. 102, no. 21, pp. 2619–2628, 2000.
[105]  H. Oral, C. Scharf, A. Chugh et al., “Catheter ablation for paroxysmal atrial fibrillation: segmental pulmonary vein ostial ablation versus left atrial ablation,” Circulation, vol. 108, no. 19, pp. 2355–2360, 2003.
[106]  F. E. Marchlinski, D. Callans, S. Dixit et al., “Efficacy and safety of targeted focal ablation versus PV isolation assisted by magnetic electroanatomic mapping,” Journal of Cardiovascular Electrophysiology, vol. 14, no. 4, pp. 358–365, 2003.
[107]  W. H. Sauer, M. L. McKernan, D. Lin, E. P. Gerstenfeld, D. J. Callans, and F. E. Marchlinski, “Clinical predictors and outcomes associated with acute return of pulmonary vein conduction during pulmonary vein isolation for treatment of atrial fibrillation,” Heart Rhythm, vol. 3, no. 9, pp. 1024–1028, 2006.
[108]  T. Bitter, G. Nolker, J. Vogt, C. Prinz, D. Horstkotte, and O. Oldenburg, “Predictors of recurrence in patients undergoing cryoballoon ablation for treatment of atrial fibrillation: the independent role of sleep-disordered breathing,” Journal of Cardiovascular Electrophysiology, vol. 23, no. 1, pp. 18–25, 2012.
[109]  E. Shahar, C. W. Whitney, S. Redline et al., “Sleep-disordered breathing and cardiovascular disease: cross-sectional results of the Sleep Heart Health Study,” American Journal of Respiratory and Critical Care Medicine, vol. 163, no. 1, pp. 19–25, 2001.
[110]  Y. K. Loke, J. W. Brown, C. S. Kwok, A. Niruban, and P. K. Myint, “Association of obstructive sleep apnea with risk of serious cardiovascular events: a systematic review and meta-analysis,” Circulation, vol. 5, no. 5, pp. 720–728, 2012.
[111]  Y. Peker, H. Glantz, E. Thunstr?m, A. Kallryd, J. Herlitz, and J. Ejdeb?ck, “Rationale and design of the Randomized Intervention with CPAP in Coronary Artery Disease and Sleep Apnoea—RICCADSA trial,” Scandinavian Cardiovascular Journal, vol. 43, no. 1, pp. 24–31, 2009.
[112]  Impact of Sleep Apnea Syndrome in the Evolution of Acute Coronary Syndrome. Effect of Intervention with Continuous Positive Airway Pressure (CPAP). A Prospective Randomized Study: iSAACC Study, http://clinicaltrials.gov/show/NCT01335087.
[113]  Sleep Apnea cardioVascular Endpoints Study—Investigating the Effectiveness of Treatment with CPAP versus Standard Care in Reducing CV Morbidity and Mortality in Patients With Co-existing CV Disease and Moderate-severe Obstructive Sleep Apnea, http://clinicaltrials.gov/show/NCT00738179.
[114]  P. A. Wolf, R. D. Abbott, and W. B. Kannel, “Atrial fibrillation as an independent risk factor for stroke: the Framingham Study,” Stroke, vol. 22, no. 8, pp. 983–988, 1991.
[115]  B. F. Gage, A. D. Waterman, W. Shannon, M. Boechler, M. W. Rich, and M. J. Radford, “Validation of clinical classification schemes for predicting stroke: results from the National Registry of Atrial Fibrillation,” Journal of the American Medical Association, vol. 285, no. 22, pp. 2864–2870, 2001.
[116]  P. Yazdan-Ashoori and A. Baranchuk, “Obstructive sleep apnea may increase the risk of stroke in AF patients: refining the CHADS2 score,” International Journal of Cardiology, vol. 146, no. 2, pp. 131–133, 2011.
[117]  M. Butt, G. Dwivedi, O. Khair, and G. Y. H. Lip, “Obstructive sleep apnea and cardiovascular disease,” International Journal of Cardiology, vol. 139, no. 1, pp. 7–16, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133