全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Expiratory Flow Limitation Definition, Mechanisms, Methods, and Significance

DOI: 10.1155/2013/749860

Full-Text   Cite this paper   Add to My Lib

Abstract:

When expiratory flow is maximal during tidal breathing and cannot be increased unless operative lung volumes move towards total lung capacity, tidal expiratory flow limitation (EFL) is said to occur. EFL represents a severe mechanical constraint caused by different mechanisms and observed in different conditions, but it is more relevant in terms of prevalence and negative consequences in obstructive lung diseases and particularly in chronic obstructive pulmonary disease (COPD). Although in COPD patients EFL more commonly develops during exercise, in more advanced disorder it can be present at rest, before in supine position, and then in seated-sitting position. In any circumstances EFL predisposes to pulmonary dynamic hyperinflation and its unfavorable effects such as increased elastic work of breathing, inspiratory muscles dysfunction, and progressive neuroventilatory dissociation, leading to reduced exercise tolerance, marked breathlessness during effort, and severe chronic dyspnea. 1. Definition Expiratory (air) flow limitation (EFL) during tidal breathing is a well-defined, mechanical pathophysiological condition occurring, either during physical exercise or at rest, before in supine and later on in sitting-standing position, when expiratory flow cannot be further increased by increasing expiratory muscles effort (i.e., by increasing pleural and alveolar pressure) because it is maximum at that tidal volume [1]. In other words, under the prevailing conditions, the respiratory system is globally limited as flow generator even during tidal expiration, and greater expiratory flow rates may be achieved just by increasing operating lung volumes, (i.e., moving progressively the end-expiratory lung volume (EELV) towards total lung capacity). In fact, the volume-related decrease of airway resistance and increase of elastic recoil are the only effective mechanisms to obtain higher expiratory flows in case of EFL [2]. As a consequence, the term airflow limitation widely used to indicate the abnormal decrease of maximal expiratory flow rates at a given lung volume, as compared to predicted (i.e., airflow reduction or airflow obstruction), is inappropriate and should not be adopted unless the condition previously described is present (Figure 1). Figure 1: Maximal and tidal flow-volume curve in two representative COPD patients: one with airflow reduction and tidal expiratory flow limitation (EFL) at rest (a), the other only with airflow reduction at rest and potential EFL during exercise (b). The NEP application at rest does not increase expiratory flow in the

References

[1]  N. B. Pride and J. Milic-Emili, “Lung mechanics,” in Chronic Obstructive Lung Disease, P. Calverley and N. B. Pride, Eds., pp. 135–160, Chapman Hall, London, UK, 1995.
[2]  D. L. Fry and R. E. Hyatt, “Pulmonary mechanics. A unified analysis of the relationship between pressure, volume and gasflow in the lungs of normal and diseased human subjects,” The American Journal of Medicine, vol. 29, no. 4, pp. 672–689, 1960.
[3]  N. B. Pride, “Ageing and changes in lung mechanics,” European Respiratory Journal, vol. 26, no. 4, pp. 563–565, 2005.
[4]  D. H. Tucker and H. O. Sieker, “The effect of change in body position on lung volumes and intrapulmonary gas mixing in patients with obesity, heart failure, and emphysema,” The American Review of Respiratory Disease, vol. 129, pp. 101–105, 1984.
[5]  R. Castile, J. Mead, A. Jackson, M. E. Wohl, and D. Stokes, “Effects of posture on flow-volume curve configuration in normal humans,” Journal of Applied Physiology Respiratory Environmental and Exercise Physiology, vol. 53, no. 5, pp. 1175–1183, 1982.
[6]  L. Eltayara, M. R. Becklake, C. A. Volta, and J. Milic-Emili, “Relationship between chronic dyspnea and expiratory flow limitation in patients with chronic obstructive pulmonary disease,” American Journal of Respiratory and Critical Care Medicine, vol. 154, no. 6, pp. 1726–1734, 1996.
[7]  J. Boczkowski, D. Murciano, M. H. Pichot, A. Ferretti, R. Pariente, and J. Milic-Emili, “Expiratory flow limitation in stable asthmatic patients during resting breathing,” American Journal of Respiratory and Critical Care Medicine, vol. 156, no. 3, pp. 752–757, 1997.
[8]  T. A. Wilson, J. R. Rodarte, and J. P. Butler, “Wave-speed and viscous flow limitation,” in Handobook of Physiology: The Respiratory System, P. T. Macklem and J. Mead, Eds., vol. 3, pp. 55–61, American Physiological Society, Baltimore, Md, USA, 1986.
[9]  J. Mead, J. M. Turner, P. T. Macklem, and J. B. Little, “Significance of the relationship between lung recoil and maximum expiratory flow,” Journal of Applied Physiology, vol. 22, no. 1, pp. 95–108, 1967.
[10]  R. E. Hyatt, “The interrelationships of pressure, flow, and volume during various respiratory maneuvers in normal and emphysematous subjects,” The American Review of Respiratory Disease, vol. 83, pp. 676–683, 1961.
[11]  R. H. Ingram Jr. and D. P. Schilder, “Effect of gas compression on pulmonary pressure, flow, and volume relationship,” Journal of Applied Physiology, vol. 21, no. 6, pp. 1821–1826, 1966.
[12]  R. D. Fairshter, “Airway hysteresis in normal subjects and individuals with chronic airflow obstruction,” Journal of Applied Physiology, vol. 58, no. 5, pp. 1505–1510, 1985.
[13]  E. D'Angelo, E. Prandi, and J. Milic-Emili, “Dependence of maximal flow-volume curves on time course of preceding inspiration,” Journal of Applied Physiology, vol. 75, no. 3, pp. 1155–1159, 1993.
[14]  N. G. Koulouris, P. Valta, A. Lavoie et al., “A simple method to detect expiratory flow limitation during spontaneous breathing,” European Respiratory Journal, vol. 8, no. 2, pp. 306–313, 1995.
[15]  P. Valta, C. Corbeil, A. Lavoie et al., “Detection of expiratory flow limitation during mechanical ventilation,” American Journal of Respiratory and Critical Care Medicine, vol. 150, no. 5, pp. 1311–1317, 1994.
[16]  V. Ninane, D. Leduc, S. A. Kafi, M. Nasser, M. Houa, and R. Sergysels, “Detection of expiratory flow limitation by manual compression of the abdominal wall,” American Journal of Respiratory and Critical Care Medicine, vol. 163, no. 6, pp. 1326–1330, 2001.
[17]  R. L. Dellacà, P. Santus, A. Aliverti et al., “Detection of expiratory flow limitation in COPD using the forced oscillation technique,” European Respiratory Journal, vol. 23, no. 2, pp. 232–240, 2004.
[18]  P. M. A. Calverley and N. G. Koulouris, “Flow limitation and dynamic hyperinflation: key concepts in modern respiratory physiology,” European Respiratory Journal, vol. 25, no. 1, pp. 186–199, 2005.
[19]  C. Tantucci, A. Duguet, T. Similowski, M. Zelter, J. P. Derenne, and J. Milic-Emili, “Effect of salbutamol on dynamic hyperinflation in chronic obstructive pulmonary disease patients,” European Respiratory Journal, vol. 12, no. 4, pp. 799–804, 1998.
[20]  N. G. Koulouris, I. Dimopoulou, P. Valta, R. Finkelstein, M. G. Cosio, and J. Milic-Emili, “Detection of expiratory flow limitation during exercise in COPD patients,” Journal of Applied Physiology, vol. 82, no. 3, pp. 723–731, 1997.
[21]  D. E. O'Donnell, S. M. Revill, and K. A. Webb, “Dynamic hyperinflation and exercise intolerance in chronic obstructive pulmonary disease,” American Journal of Respiratory and Critical Care Medicine, vol. 164, no. 5, pp. 770–777, 2001.
[22]  P. E. Pepe and J. J. Marini, “Occult positive end-expiratory pressure in mechanically ventilated patients with airflow obstruction: the auto-PEEP effect,” American Review of Respiratory Disease, vol. 126, no. 1, pp. 166–170, 1982.
[23]  D. E. O'Donnell and K. A. Webb, “Exertional breathlessness in patients with chronic airflow limitation: the role of lung hyperinflation,” American Review of Respiratory Disease, vol. 148, no. 5, pp. 1351–1357, 1993.
[24]  D. E. O'Donnell, R. Sanii, N. R. Anthonisen, and M. Younes, “Effect of dynamic airway compression on breathing pattern and respiratory sensation in severe chronic obstructive pulmonary disease,” American Review of Respiratory Disease, vol. 135, no. 4, pp. 912–918, 1987.
[25]  S. Mota, P. Casan, F. Drobnic, J. Giner, J. Sanchis, and J. Milic-Emili, “Expiratory flow limitation in elite cyclists during exercise,” European Respiratory Journal, vol. 10, 1997.
[26]  B. D. Johnson, W. G. Reddan, D. F. Pegelow, K. C. Seow, and J. A. Dempsey, “Flow limitation and regulation of functional residual capacity during exercise in a physically active aging population,” American Review of Respiratory Disease, vol. 143, no. 5, pp. 960–967, 1991.
[27]  C. de Bisschop, M. L. Marty, J. F. Tessier, P. Barberger-Gateau, J. F. Dartigues, and H. Guénard, “Expiratory flow limitation and obstruction in the elderly,” European Respiratory Journal, vol. 26, pp. 594–601, 2005.
[28]  L. Eltayara, H. Ghezzo, and J. Milic-Emili, “Orthopnea and tidal expiratory flow limitation in patients with stable COPD,” Chest, vol. 119, no. 1, pp. 99–104, 2001.
[29]  P. T. Macklem, “Hyperinflation,” American Review of Respiratory Disease, vol. 129, no. 1, pp. 1–2, 1984.
[30]  S. B. Gottfierd, A. Rossi, B. D. Higgs, et al., “Noninvasive determination of respiratory system mechanics during mechanical ventilation for acute respiratory failure,” American Review of Respiratory Disease, vol. 131, no. 3, pp. 414–420, 1985.
[31]  V. Alvisi, A. Romanello, M. Badet, S. Gaillard, F. Philit, and C. Guérin, “Time course of expiratory flow limitation in COPD patients during acute respiratory failure requiring mechanical ventilation,” Chest, vol. 123, no. 5, pp. 1625–1632, 2003.
[32]  C. Tantucci, M. Ellaffi, A. Duguet et al., “Dynamic hyperinflation and flow limitation during methacholine-induced bronchoconstriction in asthma,” European Respiratory Journal, vol. 14, no. 2, pp. 295–301, 1999.
[33]  A. Baydur and J. Milic-Emili, “Expiratory flow limitation during spontaneous breathing: comparison of patients with restrictive and obstructive respiratory disorders,” Chest, vol. 112, no. 4, pp. 1017–1023, 1997.
[34]  A. Ferretti, P. Giampiccolo, A. Cavalli, J. Milic-Emili, and C. Tantucci, “Expiratory flow limitation and orthopnea in massively obese subjects,” Chest, vol. 119, no. 5, pp. 1401–1408, 2001.
[35]  A. Duguet, C. Tantucci, O. Lozinguez et al., “Expiratory flow limitation as a determinant of orthopnea in acute left heart failure,” Journal of the American College of Cardiology, vol. 35, no. 3, pp. 690–700, 2000.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133