全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Comparison Study of Airway Reactivity Outcomes due to a Pharmacologic Challenge Test: Impulse Oscillometry versus Least Mean Squared Analysis Techniques

DOI: 10.1155/2013/618576

Full-Text   Cite this paper   Add to My Lib

Abstract:

The technique of measuring transpulmonary pressure and respiratory airflow with manometry and pneumotachography using the least mean squared analysis (LMS) has been used broadly in both preclinical and clinical settings for the evaluation of neonatal respiratory function during tidal volume breathing for lung tissue and airway frictional mechanical properties measurements. Whereas the technique of measuring respiratory function using the impulse oscillation technique (IOS) involves the assessment of the relationship between pressure and flow using an impulse signal with a range of frequencies, requires less cooperation and provides more information on total respiratory system resistance (chest wall, lung tissue, and airways). The present study represents a preclinical animal study to determine whether these respiratory function techniques (LMS and IOS) are comparable in detecting changes in respiratory resistance derived from a direct pharmacological challenge. 1. Introduction The use of animal models for studying respiratory mechanics under airway challenge tests has led to a sudden increase of information regarding the behavior of the different areas of the respiratory system. Despite the large amount of research in the adult and pediatric groups, we still lack significant knowledge in the neonatal subgroup. The present study represents a preclinical animal study to determine whether two respiratory function techniques are comparable in detecting changes in respiratory resistance derived from a direct pharmacological challenge. The technique of measuring transpulmonary pressure and respiratory airflow with esophageal manometry, airway manometry, and pneumotachography has been previously described [1]. Transpulmonary pressure derived from proximal airway pressures and intrapulmonary esophageal pressure detected from a water-filled catheter [2, 3] are measured by differential pressure transducers. The airflow is measured with a low dead-space volume pneumotachometer and a differential pressure transducer. The least mean squared analysis (LMS) has been used broadly in both preclinical and clinical settings for the evaluation of neonatal lung function during tidal volume breathing [1, 4, 5]. The technique of measuring respiratory function using forced oscillation technique (FOT), or impulse oscillometry, involves the assessment of the relationship between pressure and flow using a forced/impulse signal composed with a range of frequencies. The response to this signal is called the respiratory impedance, which is the frequency-dependent relationship

References

[1]  V. K. Bhutani, E. M. Sivieri, S. Abbasi, and T. H. Shaffer, “Evaluation of neonatal pulmonary mechanics and energetics: a two factor least mean square analysis,” Pediatric Pulmonology, vol. 4, no. 3, pp. 150–158, 1988.
[2]  C. S. Beardsmore, P. Helms, J. Stocks, D. J. Hatch, and M. Silverman, “Improved esophageal balloon technique for use in infants,” Journal of Applied Physiology Respiratory Environmental and Exercise Physiology, vol. 49, no. 4, pp. 735–742, 1980.
[3]  A. Baydur, P. K. Behrakis, and W. A. Zin, “A simple method for assessing the validity of the esophageal balloon technique,” American Review of Respiratory Disease, vol. 126, no. 5, pp. 788–791, 1982.
[4]  V. K. Bhutani, T. H. Shaffer, and D. Vidyasagar, Eds., Neonatal Pulmonary Function Testing: Physiological, Technical and Clinical Considerations, Perinatology Press, Ithaca, NY, USA, 1988.
[5]  L. S. Goldsmith, J. S. Greenspan, S. D. Rubenstein, M. R. Wolfson, and T. H. Shaffer, “Immediate improvement in lung volume after exogenous surfactant: alveolar recruitment versus increased distention,” Journal of Pediatrics, vol. 119, no. 3, pp. 424–428, 1991.
[6]  A. B. Dubois, A. W. Brody, D. H. Lewis, and B. F. Burgess Jr., “Oscillation mechanics of lungs and chest in man,” Journal of Applied Physiology, vol. 8, no. 6, pp. 587–594, 1956.
[7]  H. J. Smith, P. Reinhold, and M. D. Goldman, “Forced oscillation technique and impulse oscillometry,” European Respiratory Monograph, vol. 31, pp. 72–105, 2005.
[8]  H. Bisgaard and B. Klug, “Lung function measurement in awake young children,” European Respiratory Journal, vol. 8, no. 12, pp. 2067–2075, 1995.
[9]  C. Delacourt, H. Lorino, M. Herve-Guillot, P. Reinert, A. Harf, and B. Housset, “Use of the forced oscillation technique to assess airway obstruction and reversibility in children,” American Journal of Respiratory and Critical Care Medicine, vol. 161, no. 3, part 1, pp. 730–736, 2000.
[10]  F. M. Ducharme and G. M. Davis, “Respiratory resistance in the emergency department: a reproducible and responsive measure of asthma severity,” Chest, vol. 113, no. 6, pp. 1566–1572, 1998.
[11]  B. Klug and H. Bisgaard, “Measurement of lung function in awake 2–4-year-old asthmatic children during methacholine challenge and acute asthma: a comparison of the impulse oscillation technique, the interrupter technique, and transcutaneous measurement of oxygen versus whole-body plethysmography,” Pediatric Pulmonology, vol. 21, no. 5, pp. 290–300, 1996.
[12]  B. Klug and H. Bisgaard, “Repeatability of methacholine challenges in 2- to 4-year-old children with asthma, using a new technique for quantitative delivery of aerosol,” Pediatric Pulmonology, vol. 23, no. 4, pp. 278–286, 1997.
[13]  B. Klug and H. Bisgaard, “Specific airway resistance, interrupter resistance, and respiratory impedance in healthy children aged 2–7 years,” Pediatric Pulmonology, vol. 25, no. 5, pp. 322–331, 1998.
[14]  B. Klug and H. Bisgaard, “Lung function and short-term outcome in young asthmatic children,” European Respiratory Journal, vol. 14, no. 5, pp. 1185–1189, 1999.
[15]  B. Klug, K. G. Nielsen, and H. Bisgaard, “Observer variability of lung function measurements in 2–6-yr-old children,” European Respiratory Journal, vol. 16, no. 3, pp. 472–475, 2000.
[16]  D. St?nescu, N. E. Moavero, C. Veriter, and L. Brasseur, “Frequency dependence of respiratory resistance in healthy children,” Journal of Applied Physiology Respiratory Environmental and Exercise Physiology, vol. 47, no. 2, pp. 268–272, 1979.
[17]  E. Oostveen, D. MacLeod, H. Lorino et al., “The forced oscillation technique in clinical practice: methodology, recommendations and future developments,” European Respiratory Journal, vol. 22, no. 6, pp. 1026–1041, 2003.
[18]  J. J. Pillow, P. D. Sly, and Z. Hantos, “Monitoring of lung volume recruitment and derecruitment using oscillatory mechanics during high-frequency oscillatory ventilation in the preterm lamb,” Pediatric Critical Care Medicine, vol. 5, no. 2, pp. 172–180, 2004.
[19]  E. Rodriguez, M. B. Bober, L. Davey, et al., “Respiratory mechanics in an infant with perinatal lethal hypophosphatasia treated with human recombinant enzyme replacement therapy,” Pediatric Pulmonology, vol. 47, pp. 917–922, 2012.
[20]  U. Frey, M. Silverman, R. Kraemer, and A. C. Jackson, “High-frequency respiratory impedance measured by forced-oscillation technique in infants,” American Journal of Respiratory and Critical Care Medicine, vol. 158, no. 2, pp. 363–370, 1998.
[21]  K. N. Desager, W. Buhr, M. Willemen et al., “Measurement of total respiratory impedance in infants by the forced oscillation technique,” Journal of Applied Physiology, vol. 71, no. 2, pp. 770–776, 1991.
[22]  K. N. Desager, M. Cauberghs, J. Naudts, and K. P. van de Woestijne, “Influence of upper airway shunt on total respiratory impedance in infants,” Journal of Applied Physiology, vol. 87, no. 3, pp. 902–909, 1999.
[23]  K. N. Desager, M. Willemen, H. P. Van Bever, W. De Backer, and P. A. Vermeire, “Evaluation of nasal impedance using the forced oscillation technique in infants,” Pediatric Pulmonology, vol. 11, no. 1, pp. 1–7, 1991.
[24]  U. Frey, “Forced oscillation technique in infants and young children,” Paediatric Respiratory Reviews, vol. 6, no. 4, pp. 246–254, 2005.
[25]  G. L. Hall, Z. Hantos, J. H. Wildhaber, F. Peták, and P. D. Sly, “Methacholine responsiveness in infants assessed with low frequency forced oscillation and forced expiration techniques,” Thorax, vol. 56, no. 1, pp. 42–47, 2001.
[26]  C. J. Lanteri and P. D. Sly, “Changes in respiratory mechanics with age,” Journal of Applied Physiology, vol. 74, no. 1, pp. 369–378, 1993.
[27]  T. H. Shaffer, V. K. Bhutani, M. R. Wolfson, R. B. Penn, and N. N. Tran, “In vivo mechanical properties of the developing airway,” Pediatric Research, vol. 25, no. 2, pp. 143–146, 1989.
[28]  G. L. Hall, Z. Hantos, F. Petak et al., “Airway and respiratory tissue mechanics in normal infants,” American Journal of Respiratory and Critical Care Medicine, vol. 162, no. 4, part 1, pp. 1397–1402, 2000.
[29]  J. J. Pillow, J. Stocks, P. D. Sly, and Z. Hantos, “Partitioning of airway and parenchymal mechanics in unsedated newborn infants,” Pediatric Research, vol. 58, no. 6, pp. 1210–1215, 2005.
[30]  T. L. Miller, C. J. Singhaus, T. I. Sherman, J. S. Greenspan, and T. H. Shaffer, “Physiologic implications of helium as a carrier gas for inhaled nitric oxide in a neonatal model of Bethanecol-induced bronchoconstriction,” Pediatric Critical Care Medicine, vol. 7, no. 2, pp. 159–164, 2006.
[31]  E. A. Mates, J. Hildebrandt, J. C. Jackson, P. Tarczy-Hornoch, and M. P. Hlastala, “Shunt and ventilation-perfusion distribution during partial liquid ventilation in healthy piglets,” Journal of Applied Physiology, vol. 82, no. 3, pp. 933–942, 1997.
[32]  M. A. Enrione, M. C. Papo, C. L. Leach et al., “Regional pulmonary blood flow during partial liquid ventilation in normal and acute oleic acid-induced lung-injured piglets,” Critical Care Medicine, vol. 27, no. 12, pp. 2716–2723, 1999.
[33]  D. M. Steinhorn, M. C. Papo, A. T. Rotta, A. Aljada, B. P. Fuhrman, and P. Dandona, “Liquid ventilation attenuates pulmonary oxidative damage,” Journal of Critical Care, vol. 14, no. 1, pp. 20–28, 1999.
[34]  S. Wolf, H. Lohbrunner, T. Busch et al., “"Ideal PEEP" is superior to high dose partial liquid ventilation with low PEEP in experimental acute lung injury,” Intensive Care Medicine, vol. 27, no. 12, pp. 1937–1948, 2001.
[35]  R. K. M. Krishnan, P. A. Meyers, C. Worwa, R. Goertz, G. Schauer, and M. C. Mammel, “Standardized lung recruitment during high frequency and conventional ventilation: similar pathophysiologic and inflammatory responses in an animal model of respiratory distress syndrome,” Intensive Care Medicine, vol. 30, no. 6, pp. 1195–1203, 2004.
[36]  J. L. Nold, P. A. Meyers, C. T. Worwa et al., “Decreased lung injury after surfactant in piglets treated with continuous positive airway pressure or synchronized intermittent mandatory ventilation,” Neonatology, vol. 92, no. 1, pp. 19–25, 2007.
[37]  A. L. Lampland, P. A. Meyers, C. T. Worwa, E. C. Swanson, and M. C. Mammel, “Gas exchange and lung inflammation using nasal intermittent positive-pressure ventilation versus synchronized intermittent mandatory ventilation in piglets with saline lavage-induced lung injury: an observational study,” Critical Care Medicine, vol. 36, no. 1, pp. 183–187, 2008.
[38]  T. L. Miller, T. J. Blackson, T. H. Shaffer, and S. M. Touch, “Tracheal gas insufflation-augmented continuous positive airway pressure in a spontaneously breathing model of neonatal respiratory distress,” Pediatric Pulmonology, vol. 38, no. 5, pp. 386–395, 2004.
[39]  J. L. Schlatter and J. L. Saulnier, “Bethanechol chloride oral solutions: stability and use in infants,” Annals of Pharmacotherapy, vol. 31, no. 3, pp. 294–296, 1997.
[40]  E. N. Keklikian, M. R. Wolfson, and T. H. Shaffer, “Caffeine potentiates airway responsiveness in the neonatal lamb,” Pediatric Pulmonology, vol. 12, no. 1, pp. 17–22, 1992.
[41]  V. K. Bhutani, R. J. Koslo, and T. H. Shaffer, “The effect of tracheal, smooth muscle tone on neonatal airway collapsibility,” Pediatric Research, vol. 20, no. 6, pp. 492–495, 1986.
[42]  R. B. Penn, M. R. Wolfson, and T. H. Shaffer, “Effect of tracheal smooth muscle tone on collapsibility of immature airways,” Journal of Applied Physiology, vol. 65, no. 2, pp. 863–869, 1988.
[43]  R. B. Penn, M. R. Wolfson, and T. H. Shaffer, “Influence of smooth muscle tone and longitudinal tension on the collapsibility of immature airways,” Pediatric Pulmonology, vol. 5, no. 3, pp. 132–138, 1988.
[44]  H. B. Panitch, I. Talmaciu, J. Heckman, M. R. Wolfson, and T. H. Shaffer, “Quantitative bronchoscopic assessment of airway collapsibility in newborn lamb tracheae,” Pediatric Research, vol. 43, no. 6, pp. 832–839, 1998.
[45]  H. B. Panitch, E. N. Keklikian, R. A. Motley, M. R. Wolfson, and D. V. Schidlow, “Effect of altering smooth muscle tone on maximal expiratory flows in patients with tracheomalacia,” Pediatric Pulmonology, vol. 9, no. 3, pp. 170–176, 1990.
[46]  S. M. Stick, D. J. Turner, and P. N. LeSou?f, “Lung function and bronchial challenges in infants: repeatability of histamine and comparison with methacholine challenges,” Pediatric Pulmonology, vol. 16, no. 3, pp. 177–183, 1993.
[47]  C. Delacourt, M. R. Benoist, S. Waernessyckle et al., “Repeatability of lung function tests during methacholine challenge in wheezy infants,” Thorax, vol. 53, no. 11, pp. 933–938, 1998.
[48]  J. L. Schlatter and J. L. Saulnier, “Bethanechol chloride oral solutions: stability and use in infants,” Annals of Pharmacotherapy, vol. 31, no. 3, pp. 294–296, 1997.
[49]  L. V. Allen Jr. and M. A. Erickson, “Stability of bethanechol chloride, pyrazinamide, quinidine sulfate, rifampin, and tetracycline hydrochloride in extemporaneously compounded oral liquids,” American Journal of Health-System Pharmacy, vol. 55, no. 17, pp. 1804–1809, 1998.
[50]  M. C. Nahata, V. B. Pai, and T. F. Hipple, Eds., Pediatric Drug Formulations, Harvey Whitney Books, Cincinnati, Ohio, USA, 5th edition, 2004.
[51]  D. C. Plumb, Veterinary Drug Handbook, Iowa State Press, St. Paul, Minn, USA, 4th edition, 2002.
[52]  Z. Hantos, B. Daroczy, B. Suki, and S. Nagy, “Low-frequency respiratory mechanical impedance in the rat,” Journal of Applied Physiology, vol. 63, no. 1, pp. 36–43, 1987.
[53]  Z. Hantos, B. Daroczy, B. Suki, S. Nagy, and J. J. Fredberg, “Input impedance and peripheral inhomogeneity of dog lungs,” Journal of Applied Physiology, vol. 72, no. 1, pp. 168–178, 1992.
[54]  B. G. Ferris Jr., J. Mead, and L. H. Opie, “Partitioning of respiratory flow resistance in man,” Journal of Applied Physiology, vol. 19, pp. 653–658, 1964.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133