Coronary artery disease (CAD) and obstructive sleep apnea (OSA) are both complex and significant clinical problems. The pathophysiological mechanisms that link OSA with CAD are complex and can influence the broad spectrum of conditions caused by CAD, from subclinical atherosclerosis to myocardial infarction. OSA remains a significant clinical problem among patients with CAD, and evidence suggesting its role as a risk factor for CAD is growing. Furthermore, increasing data support that CAD prognosis may be influenced by OSA and its treatment by continuous positive airway pressure (CPAP) therapy. However, stronger evidence is needed to definitely answer these questions. This paper focuses on the relationship between OSA and CAD from the pathophysiological effects of OSA in CAD, to the clinical implications of OSA and its treatment in CAD patients. 1. Introduction Coronary artery disease (CAD) is a major health issue in developed countries and constitutes a significant cause of death and disability. The clinical spectrum of CAD ranges from stable angina pectoris to acute coronary syndromes (ACSs), a term which includes unstable angina (UA), non-ST elevation (non-Q wave) myocardial infarction (NSTEMI), and ST elevation myocardial infarction (STEMI) [1]. The primary pathologic process causing CAD is coronary atherosclerosis, which causes progressive coronary stenosis, provoking myocardial ischemia when myocardial oxygen demand exceeds oxygen supply, leading to angina pectoris. On the contrary, acute coronary syndromes are caused by the loss of integrity of the protective covering of some atherosclerotic plaques, leading to thrombus formation and subsequent vessel obstruction [2]. Despite the reduction in mortality rates that occurred in the past decades, it still affects 6.4% of adults in any of its forms and constitutes the cause of death of nearly 17% of adult population in the United States [3]. According to data from the Framingham Heart Study, a population-based longitudinal study, nearly one-half of males and one-third of females over 40 years of age will develop some manifestation of CAD [4]. OSA is a common disorder which has become an important public health problem, as it affects 2 to 7% of adults in the general population [5]. OSA is characterized by repetitive interruption of ventilation during sleep due to total collapse or narrowing of the pharyngeal airway despite breathing effort, resulting in a fall in oxygen saturation and arousal from sleep [6]. Repeated hypoxemia and arousals can lead to deleterious effects, ranging from daytime symptoms
References
[1]
K. Thygesen, J. S. Alpert, A. S. Jaffe, M. L. Simoons, B. R. Chaitman, and H. D. White, “Third universal definition of myocardial infarction,” European Heart Journal, vol. 33, no. 20, pp. 2551–2567, 2012.
[2]
P. Libby, “Current concepts of the pathogenesis of the acute coronary syndromes,” Circulation, vol. 104, no. 3, pp. 365–372, 2001.
[3]
A. S. Go, D. Mozaffarian, V. L. Roger et al., “Heart disease and stroke statistics—2013 update a report from the American Heart Association,” Circulation, vol. 127, pp. e6–e245, 2013.
[4]
D. M. Lloyd-Jones, M. G. Larson, A. Beiser, and D. Levy, “Lifetime risk of developing coronary heart disease,” The Lancet, vol. 353, no. 9147, pp. 89–92, 1999.
[5]
N. M. Punjabi, “The epidemiology of adult obstructive sleep apnea,” Proceedings of the American Thoracic Society, vol. 5, no. 2, pp. 136–143, 2008.
[6]
L. J. Epstein, D. Kristo, P. J. Strollo et al., “Clinical guideline for the evaluation, management and long-term care of obstructive sleep apnea in adults,” Journal of Clinical Sleep Medicine, vol. 5, no. 3, pp. 263–276, 2009.
[7]
T. Young, M. Palta, J. Dempsey, J. Skatrud, S. Weber, and S. Badr, “The occurrence of sleep-disordered breathing among middle-aged adults,” The New England Journal of Medicine, vol. 328, no. 17, pp. 1230–1235, 1993.
[8]
V. K. Vijayan, “Morbidities associated with obstructive sleep apnea,” Expert Review of Respiratory Medicine, vol. 6, no. 5, pp. 557–566, 2012.
[9]
T. Kasai, J. S. Floras, and T. D. Bradley, “Sleep apnea and cardiovascular disease: a bidirectional relationship,” Circulation, vol. 126, no. 12, pp. 1495–1510, 2012.
[10]
M. M.-S. Lui and M. Sau-Man, “OSA and atherosclerosis,” Journal of Thoracic Disease, vol. 4, no. 2, pp. 164–172, 2012.
[11]
U. Singh and I. Jialal, “Oxidative stress and atherosclerosis,” Pathophysiology, vol. 13, no. 3, pp. 129–142, 2006.
[12]
H. Vink, A. A. Constantinescu, and J. A. E. Spaan, “Oxidized lipoproteins degrade the endothelial surface layer: implications for platelet-endothelial cell adhesion,” Circulation, vol. 101, no. 13, pp. 1500–1502, 2000.
[13]
J. Davignon and P. Ganz, “Role of endothelial dysfunction in atherosclerosis,” Circulation, vol. 109, no. 23, pp. III27–III32, 2004.
[14]
E. Ohga, T. Tomita, H. Wada, H. Yamamoto, T. Nagase, and Y. Ouchi, “Effects of obstructive sleep apnea on circulating ICAM-1, IL-8, and MCP-1,” Journal of Applied Physiology, vol. 94, no. 1, pp. 179–184, 2003.
[15]
M. Yamauchi, H. Nakano, J. Maekawa et al., “Oxidative stress in obstructive sleep apnea,” Chest, vol. 127, no. 5, pp. 1674–1679, 2005.
[16]
M. Yamauchi and H. Kimura, “Oxidative stress in obstructive sleep apnea: putative pathways to the cardiovascular complications,” Antioxidants and Redox Signaling, vol. 10, no. 4, pp. 755–768, 2008.
[17]
A. Alonso-Fernández, F. García-Río, M. A. Arias et al., “Effects of CPAP on oxidative stress and nitrate efficiency in sleep apnoea: a randomised trial,” Thorax, vol. 64, no. 7, pp. 581–586, 2009.
[18]
A. Barceló, C. Miralles, F. Barbé, M. Vila, S. Pons, and A. G. Agustí, “Abnormal lipid peroxidation in patients with sleep apnoea,” The European Respiratory Journal, vol. 16, no. 4, pp. 644–647, 2000.
[19]
V. Savransky, A. Nanayakkara, J. Li et al., “Chronic intermittent hypoxia induces atherosclerosis,” American Journal of Respiratory and Critical Care Medicine, vol. 175, no. 12, pp. 1290–1297, 2007.
[20]
M. S. M. Ip, H. F. Tse, B. Lam, K. W. T. Tsang, and W. K. Lam, “Endothelial function in obstructive sleep apnea and response to treatment,” American Journal of Respiratory and Critical Care Medicine, vol. 169, no. 3, pp. 348–353, 2004.
[21]
S. Itzhaki, L. Lavie, G. Pillar, G. Tal, and P. Lavie, “Endothelial dysfunction in obstructive sleep apnea measured by peripheral arterial tone response in the finger to reactive hyperemia,” Sleep, vol. 28, no. 5, pp. 594–600, 2005.
[22]
A. Lurie, “Endothelial dysfunction in adults with obstructive sleep apnea,” Advances in Cardiology, vol. 46, pp. 139–170, 2011.
[23]
B. T. Patt, D. Jarjoura, D. N. Haddad et al., “Endothelial dysfunction in the microcirculation of patients with obstructive sleep apnea,” American Journal of Respiratory and Critical Care Medicine, vol. 182, no. 12, pp. 1540–1545, 2010.
[24]
R. Schulz, D. Schmidt, A. Blum et al., “Decreased plasma levels of nitric oxide derivatives in obstructive sleep apnoea: response to CPAP therapy,” Thorax, vol. 55, no. 12, pp. 1046–1051, 2000.
[25]
S. K. Namtvedt, J. Hisdal, A. Randby et al., “Impaired endothelial function in persons with obstructive sleep apnoea: impact of obesity,” Heart, vol. 99, no. 1, pp. 30–34, 2013.
[26]
T. Kadohira, Y. Kobayashi, Y. Iwata, H. Kitahara, and I. Komuro, “Coronary artery endothelial dysfunction associated with sleep apnea,” Angiology, vol. 62, no. 5, pp. 397–400, 2011.
[27]
A. N. Vgontzas, D. A. Papanicolaou, E. O. Bixler, A. Kales, K. Tyson, and G. P. Chrousos, “Elevation of plasma cytokines in disorders of excessive daytime sleepiness: role of sleep disturbance and obesity,” Journal of Clinical Endocrinology and Metabolism, vol. 82, no. 5, pp. 1313–1316, 1997.
[28]
F. Javier Nieto, T. B. Young, B. K. Lind et al., “Association of sleep-disordered breathing sleep apnea, and hypertension in a large community-based study,” Journal of the American Medical Association, vol. 283, no. 14, pp. 1829–1836, 2000.
[29]
A. S. M. Shamsuzzaman, M. Winnicki, P. Lanfranchi et al., “Elevated C-reactive protein in patients with obstructive sleep apnea,” Circulation, vol. 105, no. 21, pp. 2462–2464, 2002.
[30]
E. K. Larkin, C. L. Rosen, H. L. Kirchner et al., “Variation of C-reactive protein levels in adolescents: association with sleep-disordered breathing and sleep duration,” Circulation, vol. 111, no. 15, pp. 1978–1984, 2005.
[31]
N. M. Punjabi and B. A. Beamer, “C-reactive protein is associated with sleep disordered breathing independent of adiposity,” Sleep, vol. 30, no. 1, pp. 29–34, 2007.
[32]
C. Guilleminault, C. Kirisoglu, and M. M. Ohayon, “C-reactive protein and sleep-disordered breathing,” Sleep, vol. 27, no. 8, pp. 1507–1511, 2004.
[33]
H. K. Meier-Ewert, P. M. Ridker, N. Rifai et al., “Effect of sleep loss on C-Reactive protein, an inflammatory marker of cardiovascular risk,” Journal of the American College of Cardiology, vol. 43, no. 4, pp. 678–683, 2004.
[34]
L. Dyugovskaya, P. Lavie, and L. Lavie, “Increased adhesion molecules expression and production of reactive oxygen species in leukocytes of sleep apnea patients,” American Journal of Respiratory and Critical Care Medicine, vol. 165, no. 7, pp. 934–939, 2002.
[35]
L. Dyugovskaya, P. Lavie, and L. Lavie, “Lymphocyte activation as a possible measure of atherosclerotic risk in patients with sleep apnea,” Annals of the New York Academy of Sciences, vol. 1051, pp. 340–350, 2005.
[36]
S. Ryan, C. T. Taylor, and W. T. McNicholas, “Selective activation of inflammatory pathways by intermittent hypoxia in obstructive sleep apnea syndrome,” Circulation, vol. 112, no. 17, pp. 2660–2667, 2005.
[37]
L. F. Drager, V. Y. Polotsky, and G. Lorenzi-Filho, “Obstructive sleep apnea: an emerging risk factor for atherosclerosis,” Chest, vol. 140, no. 2, pp. 534–542, 2011.
[38]
K. Minoguchi, T. Yokoe, T. Tazaki et al., “Increased carotid intima-media thickness and serum inflammatory markers in obstructive sleep apnea,” American Journal of Respiratory and Critical Care Medicine, vol. 172, no. 5, pp. 625–630, 2005.
[39]
S. Jelic, M. Padeletti, S. M. Kawut et al., “Inflammation, oxidative stress, and repair capacity of the vascular endothelium in obstructive sleep apnea,” Circulation, vol. 117, no. 17, pp. 2270–2278, 2008.
[40]
T. Yokoe, K. Minoguchi, H. Matsuo et al., “Elevated levels of C-reactive protein and interleukin-6 in patients with obstructive sleep apnea syndrome are decreased by nasal continuous positive airway pressure,” Circulation, vol. 107, no. 8, pp. 1129–1134, 2003.
[41]
R. Altin, H. ?zdemir, K. Mahmutyazicio?lu et al., “Evaluation of carotid artery wall thickness with high-resolution sonography in obstructive sleep apnea syndrome,” Journal of Clinical Ultrasound, vol. 33, no. 2, pp. 80–86, 2005.
[42]
M. M. Ciccone, P. Scicchitano, G. Mitacchione et al., “Is there a correlation between OSAS duration/severity and carotid intima-media thickness?” Respiratory Medicine, vol. 106, no. 5, pp. 740–746, 2012.
[43]
L. F. Drager, L. A. Bortolotto, M. C. Lorenzi, A. C. Figueiredo, E. M. Krieger, and G. Lorenzi-Filho, “Early signs of atherosclerosis in obstructive sleep apnea,” American Journal of Respiratory and Critical Care Medicine, vol. 172, no. 5, pp. 613–618, 2005.
[44]
L. F. Drager, L. A. Bortolotto, A. C. Figueiredo, E. M. Krieger, and G. Lorenzi-Filho, “Effects of continuous positive airway pressure on early signs of atherosclerosis in obstructive sleep apnea,” American Journal of Respiratory and Critical Care Medicine, vol. 176, no. 7, pp. 706–712, 2007.
[45]
J. Turmel, F. Sériès, L. P. Boulet et al., “Relationship between atherosclerosis and the sleep apnea syndrome: an intravascular ultrasound study,” International Journal of Cardiology, vol. 132, no. 2, pp. 203–209, 2009.
[46]
S. Sharma, M. Gebregziabher, A. T. Parker, J. A. Abro, A. M. Armstrong, and U. J. Schoepf, “Independent association between obstructive sleep apnea and noncalcified coronary plaque demonstrated by noninvasive coronary computed tomography angiography,” Clinical Cardiology, vol. 35, no. 10, pp. 641–645, 2012.
[47]
G. Bokinsky, M. Miller, K. Ault, P. Husband, and J. Mitchell, “Spontaneous platelet activation and aggregation during obstructive sleep apnea and its response to therapy with nasal continuous positive airway pressure: a preliminary investigation,” Chest, vol. 108, no. 3, pp. 625–630, 1995.
[48]
S. Rahangdale, S. Y. Yeh, V. Novack et al., “The influence of intermittent hypoxemia on platelet activation in obese patients with obstructive sleep apnea,” Journal of Clinical Sleep Medicine, vol. 7, no. 2, pp. 172–178, 2011.
[49]
R. Von K?nel and J. E. Dimsdale, “Hemostatic alterations in patients with obstructive sleep apnea and the implications for cardiovascular disease,” Chest, vol. 124, no. 5, pp. 1956–1967, 2003.
[50]
C. Liak and M. Fitzpatrick, “Coagulability in obstructive sleep apnea,” Canadian Respiratory Journal, vol. 18, no. 6, pp. 338–348, 2011.
[51]
D. S. Hui, F. W. Ko, J. P. Fok et al., “The effects of nasal continuous positive airway pressure on platelet activation in obstructive sleep apnea syndrome,” Chest, vol. 125, no. 5, pp. 1768–1775, 2004.
[52]
K. Chin, M. Ohi, H. Kita et al., “Effects of NCPAP therapy on fibrinogen levels in obstructive sleep apnea syndrome,” American Journal of Respiratory and Critical Care Medicine, vol. 153, no. 6, pp. 1972–1976, 1996.
[53]
R. von K?nel, J. S. Loredo, S. Ancoli-Israel, and J. E. Dimsdale, “Association between sleep apnea severity and blood coagulability: treatment effects of nasal continuous positive airway pressure,” Sleep and Breathing, vol. 10, no. 3, pp. 139–146, 2006.
[54]
T. D. Bradley and J. S. Floras, “Obstructive sleep apnoea and its cardiovascular consequences,” The Lancet, vol. 373, no. 9657, pp. 82–93, 2009.
[55]
J. T. Carlson, J. Hedner, M. Elam, H. Ejnell, J. Sellgren, and B. G. Wallin, “Augmented resting sympathetic activity in awake patients with obstructive sleep apnea,” Chest, vol. 103, no. 6, pp. 1763–1768, 1993.
[56]
J. Wolf, J. Lewicka, and K. Narkiewicz, “Obstructive sleep apnea: an update on mechanisms and cardiovascular consequences,” Nutrition, Metabolism and Cardiovascular Diseases, vol. 17, no. 3, pp. 233–240, 2007.
[57]
J. Nauman, I. Janszky, L. J. Vatten, and U. Wisl?ff, “Temporal changes in resting heart rate and deaths from ischemic heart disease,” The Journal of The American Medical Association, vol. 306, no. 23, pp. 2579–2587, 2011.
[58]
K. A. Franklin, J. B. Nilsson, C. Sahlin, and U. Naslund, “Sleep apnoea and nocturnal angina,” The Lancet, vol. 345, no. 8957, pp. 1085–1087, 1995.
[59]
N. Peled, E. G. Abinader, G. Pillar, D. Sharif, and P. Lavie, “Nocturnal ischemic events in patients with obstructive sleep apnea syndrome and ischemic heart disease: effects of continuous positive air pressure treatment,” Journal of the American College of Cardiology, vol. 34, no. 6, pp. 1744–1749, 1999.
[60]
P. Hanly, Z. Sasson, N. Zuberi, and K. Lunn, “ST-segment depression during sleep in obstructive sleep apnea,” American Journal of Cardiology, vol. 71, no. 15, pp. 1341–1345, 1993.
[61]
P. Philip and C. Guilleminault, “Letter to the editor: ST segment abnormality, angina during sleep and obstructive sleep apnea,” Sleep, vol. 16, no. 6, pp. 558–559, 1993.
[62]
A. S. Gami, A. Svatikova, R. Wolk et al., “Cardiac troponin T in obstructive sleep apnea,” Chest, vol. 125, no. 6, pp. 2097–2100, 2004.
[63]
A. Randby, S. K. Namtvedt, G. Einvik et al., “Obstructive sleep apnea is associated with increased high-sensitivity cardiac troponin T levels,” Chest, vol. 142, no. 3, pp. 639–646, 2012.
[64]
F. H. Sert Kuniyoshi, A. Garcia-Touchard, A. S. Gami et al., “Day-night variation of acute myocardial infarction in obstructive sleep apnea,” Journal of the American College of Cardiology, vol. 52, no. 5, pp. 343–346, 2008.
[65]
A. S. Gami, D. E. Howard, E. J. Olson, and V. K. Somers, “Day-night pattern of sudden death in obstructive sleep apnea,” The New England Journal of Medicine, vol. 352, no. 12, pp. 1206–1214, 2005.
[66]
L. Lavie and P. Lavie, “Ischemic preconditioning as a possible explanation for the age decline relative mortality in sleep apnea,” Medical Hypotheses, vol. 66, no. 6, pp. 1069–1073, 2006.
[67]
H. K. Eltzschig and T. Eckle, “Ischemia and reperfusion—from mechanism to translation,” Nature Medicine, vol. 17, no. 11, pp. 1391–1401, 2011.
[68]
N. Shah, S. Redline, H. K. Yaggi et al., “Obstructive sleep apnea and acute myocardial infarction severity: ischemic preconditioning?” Sleep and Breathing. In press.
[69]
S. Berger, D. Aronson, P. Lavie, and L. Lavie, “Endothelial progenitor cells in acute myocardial infarction and sleep-disordered breathing,” American Journal of Respiratory and Critical Care Medicine, vol. 187, no. 1, pp. 90–98, 2013.
[70]
J. R. Resar, A. Roguin, J. Voner et al., “Hypoxia-inducible factor 1α polymorphism and coronary collaterals in patients with ischemic heart disease,” Chest, vol. 128, no. 2, pp. 787–791, 2005.
[71]
A. Schultz, L. Lavie, I. Hochberg et al., “Interindividual heterogeneity in the hypoxic regulation of VEGF: significance for the development of the coronary artery collateral circulation,” Circulation, vol. 100, no. 5, pp. 547–552, 1999.
[72]
S. Steiner, P. O. Schueller, V. Schulze, and B. E. Strauer, “Occurrence of coronary collateral vessels in patients with sleep apnea and total coronary occlusion,” Chest, vol. 137, no. 3, pp. 516–520, 2010.
[73]
T. Mooe, T. Rabben, U. Wiklund, K. A. Franklin, and P. Eriksson, “Sleep-disordered breathing in men with coronary artery disease,” Chest, vol. 109, no. 3, pp. 659–663, 1996.
[74]
Y. Peker, H. Kraiczi, J. Hedner, S. L?th, A. Johansson, and M. Bende, “An independent association between obstructive sleep apnoea and coronary artery disease,” European Respiratory Journal, vol. 14, no. 1, pp. 179–184, 1999.
[75]
T. Konecny, F. H. Sert Kuniyoshi, M. Orban et al., “Under-diagnosis of sleep apnea in patients after acute myocardial infarction,” Journal of the American College of Cardiology, vol. 56, no. 9, pp. 742–743, 2010.
[76]
B. M. Sanner, M. Konermann, C. Doberauer, T. Weiss, and W. Zidek, “Sleep-disordered breathing in patients referred for angina evaluation—association with left ventricular dysfunction,” Clinical Cardiology, vol. 24, no. 2, pp. 146–150, 2001.
[77]
C. H. Lee, S. M. Khoo, B. C. Tai et al., “Obstructive sleep apnea in patients admitted for acute myocardial infarction: prevalence, predictors, and effect on microvascular perfusion,” Chest, vol. 135, no. 6, pp. 1488–1495, 2009.
[78]
C. Lee, S. Khoo, M. Y. Chan et al., “Severe obstructive sleep apnea and outcomes following myocardial infarction,” Journal of Clinical Sleep Medicine, vol. 7, no. 6, pp. 616–621, 2011.
[79]
V. Areias, J. Romero, K. Cunha et al., “Sleep apnea-hypopnea syndrome and acute coronary syndrome—an association not to forget,” Revista Portuguesa De Pneumologia, vol. 18, no. 1, pp. 22–28, 2012.
[80]
F. Garcia-Rio, A. Alonso-Fernández, E. Armada et al., “CPAP effect on recurrent episodes in patients with sleep apnea and myocardial infarction,” International Journal of Cardiology. In press.
[81]
P. G. Steg, S. K. James, D. Atar et al., “ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation,” European Heart Journal, vol. 33, no. 20, pp. 2569–2619, 2012.
[82]
C. W. Hamm, J. Bassand, S. Agewall et al., “ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: the Task Force for the management of acute coronary syndromes (ACS) in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC),” European Heart Journal, vol. 32, no. 23, pp. 2999–3054, 2011.
[83]
K. Monahan and S. Redline, “Role of obstructive sleep apnea in cardiovascular disease,” Current Opinion in Cardiology, vol. 26, no. 6, pp. 541–547, 2011.
[84]
T. Young, E. Shahar, F. J. Nieto et al., “Predictors of sleep-disordered breathing in community-dwelling adults: the Sleep Heart Health Study,” Archives of Internal Medicine, vol. 162, no. 8, pp. 893–900, 2002.
[85]
Y. Lin, Q. Li, and X. Zhang, “Interaction between smoking and obstructive sleep apnea: not just participants,” Chinese Medical Journal, vol. 125, no. 17, pp. 3150–3156, 2012.
[86]
P. E. Peppard, T. Young, M. Palta, and J. Skatrud, “Prospective study of the association between sleep-disordered breathing and hypertension,” The New England Journal of Medicine, vol. 342, no. 19, pp. 1378–1384, 2000.
[87]
A. V. Chobanian, G. L. Bakris, H. R. Black et al., “The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure: the JNC 7 report,” Journal of the American Medical Association, vol. 289, no. 19, pp. 2560–2572, 2003.
[88]
K. J. Reichmuth, D. Austin, J. B. Skatrud, and T. Young, “Association of sleep apnea and type II diabetes: a population-based study,” American Journal of Respiratory and Critical Care Medicine, vol. 172, no. 12, pp. 1590–1595, 2005.
[89]
E. Tasali, B. Mokhlesi, and E. Van Cauter, “Obstructive sleep apnea and type 2 diabetes: interacting epidemics,” Chest, vol. 133, no. 2, pp. 496–506, 2008.
[90]
A. M. Adedayo, O. Olafiranye, D. Smith et al., “Obstructive sleep apnea and dyslipidemia: evidence and underlying mechanism,” Sleep and Breathing. In press.
[91]
J. C. Lam, J. C. Mak, and M. S. Ip, “Obesity, obstructive sleep apnoea and metabolic syndrome,” Respirology, vol. 17, no. 2, pp. 223–236, 2012.
[92]
D. Sorajja, A. S. Gami, V. K. Somers, T. R. Behrenbeck, A. Garcia-Touchard, and F. Lopez-Jimenez, “Independent association between obstructive sleep apnea and subclinical coronary artery disease,” Chest, vol. 133, no. 4, pp. 927–933, 2008.
[93]
H. Sch?fer, U. Koehler, S. Ewig, E. Hasper, S. Tasci, and B. Lüderitz, “Obstructive sleep apnea as a risk marker in coronary artery disease,” Cardiology, vol. 92, no. 2, pp. 79–84, 1999.
[94]
Y. Peker, J. Hedner, J. Norum, H. Kraiczi, and J. Carlson, “Increased incidence of cardiovascular disease in middle-aged men with obstructive sleep apnea: a 7-year follow-up,” American Journal of Respiratory and Critical Care Medicine, vol. 166, no. 2, pp. 159–165, 2002.
[95]
O. Milleron, R. Pillière, A. Foucher et al., “Benefits of obstructive sleep apnoea treatment in coronary artery disease: a long-term follow-up study,” European Heart Journal, vol. 25, no. 9, pp. 728–734, 2004.
[96]
L. S. Doherty, J. L. Kiely, V. Swan, and W. T. McNicholas, “Long-term effects of nasal continuous positive airway pressure therapy on cardiovascular outcomes in sleep apnea syndrome,” Chest, vol. 127, no. 6, pp. 2076–2084, 2005.
[97]
J. M. Marin, S. J. Carrizo, E. Vicente, and A. G. N. Agusti, “Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: an observational study,” The Lancet, vol. 365, no. 9464, pp. 1046–1053, 2005.
[98]
E. Shahar, C. W. Whitney, S. Redline et al., “Sleep-disordered breathing and cardiovascular disease: cross-sectional results of the sleep heart health study,” American Journal of Respiratory and Critical Care Medicine, vol. 163, no. 1, pp. 19–25, 2001.
[99]
D. J. Gottlieb, G. Yenokyan, A. B. Newman et al., “Prospective study of obstructive sleep apnea and incident coronary heart disease and heart failure: the sleep heart health study,” Circulation, vol. 122, no. 4, pp. 352–360, 2010.
[100]
N. A. Shah, H. K. Yaggi, J. Concato, and V. Mohsenin, “Obstructive sleep apnea as a risk factor for coronary events or cardiovascular death,” Sleep & Breathing = Schlaf & Atmung, vol. 14, no. 2, pp. 131–136, 2010.
[101]
J. M. Marin, S. J. Carrizo, and I. Kogan, “Obstructive sleep apnea and acute myocardial infarction: clinical implications of the association,” Sleep, vol. 21, no. 8, pp. 809–815, 1998.
[102]
Y. Peker, J. Hedner, H. Kraiczi, and S. L?th, “Respiratory disturbance index: an independent predictor of mortality in coronary artery disease,” American Journal of Respiratory and Critical Care Medicine, vol. 162, no. 1, pp. 81–86, 2000.
[103]
T. Mooe, K. A. Franklin, K. Holmstr?m, T. Rabben, and U. Wiklund, “Sleep-disordered breathing and coronary artery disease: long-term prognosis,” American Journal of Respiratory and Critical Care Medicine, vol. 164, no. 10, pp. 1910–1913, 2001.
[104]
F. Valham, T. Mooe, T. Rabben, H. Stenlund, U. Wiklund, and K. A. Franklin, “Increased risk of stroke in patients with coronary artery disease and sleep apnea: a 10-year follow-up,” Circulation, vol. 118, no. 9, pp. 955–960, 2008.
[105]
D. Yumino, Y. Tsurumi, A. Takagi, K. Suzuki, and H. Kasanuki, “Impact of obstructive sleep apnea on clinical and angiographic outcomes following percutaneous coronary intervention in patients with acute coronary syndrome,” American Journal of Cardiology, vol. 99, no. 1, pp. 26–30, 2007.
[106]
L. C. Correia, A. C. Souza, G. Garcia et al., “Obstructive sleep apnea affects hospital outcomes of patients with non-ST-elevation acute coronary syndromes,” Sleep, vol. 35, no. 9, pp. 1241A–125A, 2012.
[107]
H. Nakashima, T. Katayama, C. Takagi et al., “Obstructive sleep apnoea inhibits the recovery of left ventricular function in patients with acute myocardial infarction,” European Heart Journal, vol. 27, no. 19, pp. 2317–2322, 2006.
[108]
G. C. Hagenah, E. Gueven, and S. Andreas, “Influence of obstructive sleep apnoea in coronary artery disease: a 10-year follow-up,” Respiratory Medicine, vol. 100, no. 1, pp. 180–182, 2006.
[109]
N. J. Buchner, B. M. Sanner, J. Borgel, and L. C. Rump, “Continuous positive airway pressure treatment of mild to moderate obstructive sleep apnea reduces cardiovascular risk,” American Journal of Respiratory and Critical Care Medicine, vol. 176, no. 12, pp. 1274–1280, 2007.
[110]
F. Barbé, J. Durán-Cantolla, M. Sánchez-de-la-Torre et al., “Effect of continuous positive airway pressure on the incidence of hypertension and cardiovascular events in nonsleepy patients with obstructive sleep apnea: a randomized controlled trial,” The Journal of The American Medical Association, vol. 307, no. 20, pp. 2161–2168, 2012.
[111]
F. Campos-Rodriguez, M. A. Martinez-Garcia, I. de La Cruz-Moron, C. Almeida-Gonzalez, P. Catalan-Serra, and J. M. Montserrat, “Cardiovascular mortality in women with obstructive sleep apnea with or without continuous positive airway pressure treatment: a cohort study,” Annals of Internal Medicine, vol. 156, no. 2, pp. 115–122, 2012.
[112]
M. Martínez-García, F. Campos-Rodríguez, P. Catalán-Serra et al., “Cardiovascular mortality in obstructive sleep apnea in the elderly: role of long-term continuous positive airway pressure treatment: a prospective observational study,” American Journal of Respiratory and Critical Care Medicine, vol. 186, no. 9, pp. 909–916, 2012.
[113]
A. Cassar, T. I. Morgenthaler, R. J. Lennon, C. S. Rihal, and A. Lerman, “Treatment of obstructive sleep apnea is associated with decreased cardiac death after percutaneous coronary intervention,” Journal of the American College of Cardiology, vol. 50, no. 14, pp. 1310–1314, 2007.
[114]
C. K. Chow, S. Jolly, P. Rao-Melacini, K. A. A. Fox, S. S. Anand, and S. Yusuf, “Association of diet, exercise, and smoking modification with risk of early cardiovascular events after acute coronary syndromes,” Circulation, vol. 121, no. 6, pp. 750–758, 2010.
[115]
G. Sampol, G. Rodés, O. Romero, M. J. Jurado, and P. Lloberes, “Adherence to nCPAP in patients with coronary disease and sleep apnea without sleepiness,” Respiratory Medicine, vol. 101, no. 3, pp. 461–466, 2007.
[116]
Y. Peker, H. Glantz, E. Thunstr?m, A. Kallryd, J. Herlitz, and J. Ejdeb?ck, “Rationale and design of the randomized intervention with CPAP in coronary artery disease and sleep apnoea—RICCADSA trial,” Scandinavian Cardiovascular Journal, vol. 43, no. 1, pp. 24–31, 2009.