Application of Bait Treated with the Entomopathogenic Fungus Metarhizium anisopliae (Metsch.) Sorokin for the Control of Microcerotermes diversus Silv.
Microcerotermes diversus Silvestri (Isoptera, Termitidae) is considered to be the most destructive termite in Khuzestan province (Iran), and its control by conventional methods is often difficult. Biological control using entomopathogenic fungi could be an alternative management strategy. Performance of a bait matrix treated with the entomopathogenic fungus Metarhizium anisopliae (Metsch.) Sorokin, Strain Saravan (DEMI 001), against M. diversus was evaluated in this paper. The highest rate of mortality occurred at concentrations of 3.7 × 107 and 3.5 × 108 (conidia per mL). There was no significant difference between treatments, in the rate of feeding on the bait. The fungal pathogen was not repellent to the target termite over the conidial concentrations used. The current results suggest potential of such bait system in controlling termite. However the effectiveness of M. anisopliae as a component of integrated pest management for M. diversus still needs to be proven under field conditions. 1. Introduction Currently, species in the genera, Amitermes and Microcerotermes (Termitidae), Anacanthotermes (Hodotermitidae), and Psammotermes (Rhinotermitidae), are the most important termites in Iran [1]. Majority of termites in the Khuzestan province belong to the subterranean termite group [2]. Studies show Microcerotermes diversus is the most destructive termite in Khuzestan province. It has a wide foraging area and is able to form secondary colonies in walls, ceilings of buildings, and in trees. This termite is also prevalent in other parts of Iran and in Iraq, Kuwait, Oman, United Arab Emirates (UAE), and Saudi Arabia and is one of the most important pests of date palms (Phoenix dactylifera L.) in Iran, Iraq, and Saudi Arabia [3]. Current management of subterranean termites in Iran involves the application of soil insecticides [1]. However, continuous use of chemical pesticides in the environment is a concern [4–6], especially in areas with a high groundwater table, as in the city of Ahvaz [7]. Biological control has been suggested as an alternative strategy to the widespread application of chemical pesticides. Following this interest in the use of entomopathogenic fungi to combat insect pests has increased. Application of entomopathogenic fungi against termites has the minimum negative impact on the environment [8]. There have been a number of studies evaluating the efficacy of the hypocrealean Hyphomycete, Beauveria bassiana (Bals.) Vuillemin, against subterranean termites [9]. Similarly Ascomycete, Metarhizium anisopliae (Metsch.) Sorokin, present in the
References
[1]
B. Habibpour, Laboratory and field evaluation of bait-toxicants for suppression subterranean termite populations in Ahvaz (Iran) [Ph.D. thesis], Department of Plant Protection, College of Agriculture, Shahid Chamran University of Ahvaz, Khuzestan, Iran, 2006.
[2]
M. J. Pearce, Termites: Biology and Pest Management, CAB International, New York, NY, USA, 1997.
[3]
J. W. M. Logan and A. El Bakri, “Termite damage to date palms (Phoenix dactylifera L.) in Northern Sudan with particular reference to the dongle district,” Tropical Science, vol. 30, pp. 95–108, 1990.
[4]
N. Y. Su, “Evaluation of bait-toxicants for suppression of subterranean termite populations,” Sociobiology, vol. 19, pp. 211–220, 1991.
[5]
N. Y. Su, P. M. Ban, and R. F. Scheffrahn, “Suppression of foraging population of the Formosan subterranean termite (Isoptera: Rhinotermitidae) by field application of a slow-acting toxicant bait,” Journal of Economic Entomology, vol. 84, no. 5, pp. 1525–1531, 1991.
[6]
M. Verma, S. Sharma, and R. Prasad, “Biological alternatives for termite control: a review,” International Biodeterioration and Biodegradation, vol. 63, no. 8, pp. 959–972, 2009.
[7]
B. Habibpour, M. S. Mossadegh, G. Henderson, and S. Moharramipour, “Laboratory evaluation of two insect growth regulators (IGRs) on Microcerotermes diversus (Silvestri) (Isoptera: Termitidae) in Southwest Iran,” Sociobiology, vol. 50, no. 3, pp. 1199–1209, 2007.
[8]
I. L. Bayon, D. Ansard, C. Brunet, S. Girardi, and I. Paulmier, “Biocontrol of Reticulitermes santonensis by entomopathogenic fungi improvement of the contamination process,” IRG/WP/DOC 00-10359, The International Research Group on Wood Protection, 2000.
[9]
J. E. M. Almeida, S. B. Alves, and R. M. Pereira, “Selection of Beauveria spp. isolates for control of the termite Heterotermes tenuis (Hagen, 1858),” Journal of Applied Entomology, vol. 121, no. 9-10, pp. 539–543, 1997.
[10]
D. W. Roberts and R. J. St. Leger, “Metarhizium spp., cosmopolitan insect-pathogenic fungi: mycological aspect,” Advances in Applied Microbiology, vol. 54, pp. 1–70, 2004.
[11]
M. A. Tajick Ghanbary, A. Asgharzadeh, A. R. Hadizadeh, and M. Mohammadi Sharif, “A quick method for Metarhizium anisopliae isolation from cultural soils,” American Journal of Agricultural and Biological Science, vol. 4, no. 2, pp. 152–155, 2009.
[12]
C. Wang and J. E. Powell, “Cellulose bait improves the effectiveness of Metarhizium anisopliae as a microbial control of termites (Isoptera: Rhinotermitidae),” Biological Control, vol. 30, no. 2, pp. 523–529, 2004.
[13]
R. Ramakrishnan, D. R. Suiter, C. H. Nakatsu, R. A. Humber, and G. W. Bennett, “Imidacloprid-enhanced Reticulitermes flavipes (Isoptera: Rhinotermitidae) susceptibility to the entomopathogen Metarhizium anisopliae,” Journal of Economic Entomology, vol. 92, no. 5, pp. 1125–1132, 1999.
[14]
A. Hussain, S. Ahmed, and M. Shahid, “Laboratory and field evaluation of Metarhizium anisopliae var. anisopliae for controlling subterranean termites,” Neotropical Entomology, vol. 40, no. 2, pp. 244–250, 2011.