全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Psyche  2013 

Climatic, Regional Land-Use Intensity, Landscape, and Local Variables Predicting Best the Occurrence and Distribution of Bee Community Diversity in Various Farmland Habitats in Uganda

DOI: 10.1155/2013/564528

Full-Text   Cite this paper   Add to My Lib

Abstract:

This study was conducted in 2006 in central Uganda to provide baseline data on relationships between bee community variables and local, climatic, landscape and regional drivers affecting bee community abundance and diversity in agricultural landscapes. Bee abundance and species richness increased significantly ( ) with increase in percent cover of semi-natural habitats and the abundance of wild and cultivated floral resources in the landscape. There were strong linear declines ( ) in bee species richness and abundance with cultivation intensity. Bee species richness declined very steeply with forest distance. Bee species richness and abundance were negatively affected by land-use intensity ( ). Bee species richness and abundance were strongly negatively correlated ( ) with increase in mean annual temperatures in the previous years than in current years indicating potential vulnerability of local bee species to future climate changes. The percent cover of semi-natural habitats and natural in the farmland predicted best the occurrence and distribution in central Uganda. It is therefore recommended to policy-makers and to farmers to invest in the protection of forest fragments (and related semi-natural habitats) acting as buffer in the mitigation of negative effects of climate change on bee biodiversity and pollination services delivery. 1. Introduction Pollinators provide a crucial ecosystem service through their role in the sexual reproduction of both wild plants and crops [1–3]. Pioneering works highlighted the fact that wild bees are by far the most important providers of vital pollination services in the world [4–7]. Their ongoing decline and potential ecological and economic consequences are therefore of major concern [8–11]. Long-term losses of certain pollinator species may threaten future ability of rural landscapes to maintain current levels of crop production. There exist multitude factors (pressures), but currently suspected drivers (working alone or in synergy to produce negative or positive impacts) with potential effects (e.g., likely causing decline) in bees include land use change, use of pesticides (pesticide exposure) and reductions in population genetic diversity, farming and farm management practices changes, habitat loss and fragmentation, introduction of non native invasive species, species competition for resources, parasites and pathogen spread, heavy metal pollution, and climate change [9, 11–13]. Interactions between these multiple factors and various other factors are likely; for example, nutritional stress, due to a lack of

References

[1]  A. M. Klein, B. E. Vaissière, J. H. Cane et al., “Importance of pollinators in changing landscapes for world crops,” Proceedings of Royal society of London B, vol. 274, no. 1608, pp. 303–313, 2007.
[2]  C. Kremen, N. M. Williams, M. A. Aizen et al., “Pollination and other ecosystem services produced by mobile organisms: a conceptual framework for the effects of land-use change,” Ecology Letters, vol. 10, no. 4, pp. 299–314, 2007.
[3]  J. C. Watson, A. T. Wolf, and J. S. Ascher, “Forested landscapes promote richness and abundance of native bees (Hymenoptera: Apoidea: Anthophila) in Wisconsin apple orchards,” Environmental Entomology, vol. 40, no. 3, pp. 621–632, 2011.
[4]  D. W. Roubik, Pollination of Cultivated Plants in the Tropics, FAO, Rome, Italy, 1995.
[5]  T. H. Ricketts, J. Regetz, I. Steffan-Dewenter et al., “Landscape effects on crop pollination services: are there general patterns?” Ecology Letters, vol. 11, no. 5, pp. 499–515, 2008.
[6]  R. Winfree, D. Cariveau, and I. Bartomeus, “Native pollinators in anthropogenic habitats,” Annual Review of Ecology, Evolution, and Systematics, vol. 42, pp. 1–22, 2011.
[7]  R. Winfree, B. J. Gross, and C. Kremen, “Valuing pollination services to agriculture,” Ecological Economics, vol. 71, pp. 80–88, 2011.
[8]  J. C. Biesmeijer, S. P. M. Roberts, M. Reemer et al., “Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands,” Science, vol. 313, no. 5785, pp. 351–354, 2006.
[9]  S. G. Potts, P. G. Kevan, and J. W. Boone, “Conservation in Pollination: collecting, surveying and monitoring,” in Pollination Ecology: A Practical Approach, A. Dafni and P. Kevan, Eds., Enviroquest, Cambridge, UK, 2005.
[10]  V. L. Féon, F. Burel, R. Chifflet, et al., “Solitary bee abundance and species richness in dynamic agricultural landscapes,” Agriculture, Ecosystems and Environment. In press.
[11]  S. G. Potts, J. C. Biesmeijer, C. Kremen, P. Neumann, O. Schweiger, and W. E. Kunin, “Global pollinator declines: trends, impacts and drivers,” Trends in Ecology and Evolution, vol. 25, no. 6, pp. 345–353, 2010.
[12]  D. Moroń, I. M. Grzes, P. Skórka et al., “Abundance and diversity of wild bees along gradients of heavy metal pollution,” Journal of Applied Ecology, vol. 49, no. 1, pp. 118–125, 2012.
[13]  A.-M. Klein, “Plant-pollinator interactions in changing environments,” Basic and Applied Ecology, vol. 12, no. 4, pp. 279–281, 2011.
[14]  R. Winfree, R. Aguilar, D. P. Vázquez, G. Lebuhn, and M. A. Aizen, “A meta-analysis of bees’ responses to anthropogenic disturbance,” Ecology, vol. 90, no. 8, pp. 2068–2076, 2009.
[15]  C. D. Michener, The Bees of the World, The John Hopkins University Press, Baltimore, Md, USA, 2007.
[16]  C. D. Eardley, M. Gikungu, and M. P. Schwarz, “Bee conservation in Sub-Saharan Africa and Madagascar: diversity, status and threats,” Apidologie, vol. 40, no. 3, pp. 355–366, 2009.
[17]  P. Hoehn, I. Steffan-Dewenter, and T. Tscharntke, “Relative contribution of agroforestry, rainforest and openland to local and regional bee diversity,” Biodiversity and Conservation, vol. 19, no. 8, pp. 2189–2200, 2010.
[18]  T. M. B. Munyuli, Pollinator biodiversity and economic value of pollination services in Uganda [Ph.D. dissertation], Makerere University, Kampala, Uganda, 2010.
[19]  T. M. B. Munyuli, “Factors governing flower-visitation patterns and quality of pollination services delivered by social and solitary bee species to coffee in central Uganda,” African Journal of Ecology, vol. 49, pp. 501–509, 2011.
[20]  T. M. B. Munyuli, “Pollinator biodiversity in Uganda and in Sub-Sahara Africa: landscape and habitat management strategies for its conservation,” International Journal of Biodiversity and Conservation, vol. 3, pp. 551–609, 2011.
[21]  T. M. B. Munyuli, “Farmers’ perceptions of pollinators’ importance in coffee production in Uganda,” Agricultural Sciences, vol. 2, pp. 318–333, 2011.
[22]  A. S. Persson and H. G. Smith, “Bumblebee colonies produce larger foragers in complex landscapes,” Basic and Applied Ecology, vol. 12, pp. 695–702, 2011.
[23]  T. Tscharntke, A. M. Klein, A. Kruess, I. Steffan-Dewenter, and C. Thies, “Landscape perspectives on agricultural intensification and biodiversity— ecosystem service management,” Ecology Letters, vol. 8, no. 8, pp. 857–874, 2005.
[24]  R. Bommarco, J. C. Biesmeijer, B. Meyer et al., “Dispersal capacity and diet breadth modify the response of wild bees to habitat loss,” Proceedings of the Royal Society B, vol. 277, no. 1690, pp. 2075–2082, 2010.
[25]  J. M. Tylianakis, A. M. Klein, and T. Tscharntke, “Spatiotemporal variation in the diversity of hymenoptera across a tropical habitat gradient,” Ecology, vol. 86, no. 12, pp. 3296–3302, 2005.
[26]  N. Gallai, J. M. Salles, J. Settele, and B. E. Vaissière, “Economic valuation of the vulnerability of world agriculture confronted with pollinator decline,” Ecological Economics, vol. 68, no. 3, pp. 810–821, 2009.
[27]  T. M. B. Munyuli, “Assessment of indicator species of butterfly assemblages in coffee-banana farming system in central Uganda,” African Journal of Ecology, vol. 50, pp. 77–89, 2012.
[28]  T. M. B. Munyuli, “Diversity of life-history traits, functional groups and indicator species of bee communities from farmlands of central Uganda,” Jordan Journal of Biological Sciences, vol. 5, no. 1, pp. 1–14, 2012.
[29]  T. M. B. Munyuli, “Micro, local, landscape and regional drivers of bee biodiversity and pollination services delivery to coffee (Coffea canephora) in Uganda,” International Journal of Biodiversity, Ecosystem Services and Management, vol. 8, no. 3, pp. 190–203, 2012.
[30]  T. M. B. Munyuli, “Is pan-trapping the most reliable sampling method for measuring and monitoring bee biodiversity in agroforestry systems in sub-Saharan Africa?” International Journal of Tropical Insect Science, vol. 33, no. 11, pp. 14–37, 2013.
[31]  S. J. Hegland, A. Nielsen, A. Lázaro, A. L. Bjerknes, and ?. Totland, “How does climate warming affect plant-pollinator interactions?” Ecology Letters, vol. 12, no. 2, pp. 184–195, 2009.
[32]  D. A. Moeller, M. A. Geber, V. M. Eckhart, and P. Tiffin, “Reduced pollinator service and elevated pollen limitation at the geographic range limit of an annual plant,” Ecology, vol. 93, no. 5, pp. 1036–1048, 2012.
[33]  T. Tscharntke, Y. Clough, T. C. Wanger et al., “Global food security, biodiversity conservation and the future of agricultural intensification,” Biological Conservation, vol. 151, no. 1, pp. 53–59, 2012.
[34]  J. Banaszak and T. Manole, “Diversity and density of pollinating insects (Apoidea) in the agricultural landscape of Romania,” Polskie Pismo Entomologiczne, vol. 57, pp. 747–766, 1987.
[35]  T. M. B. Munyuli, “Pollination services delivery and food security in Sub-Sahara Africa are highly threatened by future climate changes: preliminary evidences,” in Proceedings of Climate Change Network Team Conference (CCNT '11), London, UK, September 2011.
[36]  C. Westphal, R. Bommarco, G. Carré et al., “Measuring bee diversity in different European habitats and biogeographical regions,” Ecological Monographs, vol. 78, no. 4, pp. 653–671, 2008.
[37]  M. W. Gikungu, Bee diversity and some aspects of their ecological interactions with plants in a successional tropical community [Ph.D. dissertation], University of Bonn, Bonn, Germany, 2006.
[38]  R. Kajobe, Foraging behaviour of equatorial Afro-tropical stingless bees: habitat selection and competition for resources [Ph.D. thesis], University of Utrecht, Utrecht, The Netherlands, 2008.
[39]  R. Rader, B. G. Howlett, S. A. Cunningham, D. A. Westcott, and W. Edwards, “Spatial and temporal variation in pollinator effectiveness: do unmanaged insects provide consistent pollination services to mass flowering crops?” Journal of Applied Ecology, vol. 49, pp. 126–134, 2012.
[40]  A.-M. Klein, C. Brittain, S. D. Hendrix, R. Thorp, N. Williams, and C. Kremen, “Wild pollination services to California almond rely on semi-natural habitat,” Journal of Applied Ecology, vol. 49, pp. 723–732, 2012.
[41]  A.-M. Klein, I. Steffan-Dewenter, D. Buchori, and T. Tscharntke, “Effects of land-use intensity in tropical agroforestry systems on coffee flower-visiting and trap-nesting bees and wasps,” Conservation Biology, vol. 16, no. 4, pp. 1003–1014, 2002.
[42]  R. Grundel, R. P. Jean, K. J. Frohnapple, G. A. Glowacki, P. E. Scott, and N. B. Pavlovic, “Floral and nesting resources, habitat structure, and fire influence bee distribution across an open-forest gradient,” Ecological Applications, vol. 20, no. 6, pp. 1678–1692, 2010.
[43]  E. Lonsdorf, C. Kremen, T. Ricketts, R. Winfree, N. Williams, and S. Greenleaf, “Modelling pollination services across agricultural landscapes.,” Annals of Botany, vol. 103, no. 9, pp. 1589–1600, 2009.
[44]  A. Kovács-Hostyánszki, P. Batáry, and A. Báldi, “Local and landscape effects on bee communities of Hungarian winter cereal fields,” Agricultural and Forest Entomology, vol. 13, pp. 59–66, 2011.
[45]  A. Holzschuh, I. Steffan-Dewenter, D. Kleijn, and T. Tscharntke, “Diversity of flower-visiting bees in cereal fields: effects of farming system, landscape composition and regional context,” Journal of Applied Ecology, vol. 44, no. 1, pp. 41–49, 2007.
[46]  M. C. B. Matos, L. Sousa-Souto, R. S. Almeida, and A. V. Teodoro, “Contrasting patterns of species richness and composition of solitary wasps and bees (Insecta: Hymenoptera) according to land-use,” Biotropica, vol. 45, no. 1, pp. 73–79, 2013.
[47]  C. Carvell, W. R. Meek, R. F. Pywell, D. Goulson, and M. Nowakowski, “Comparing the efficacy of agri-environment schemes to enhance bumble bee abundance and diversity on arable field margins,” Journal of Applied Ecology, vol. 44, no. 1, pp. 29–40, 2007.
[48]  L. E. Hannon and T. D. Sisk, “Hedgerows in an agri-natural landscape: potential habitat value for native bees,” Biological Conservation, vol. 142, no. 10, pp. 2140–2154, 2009.
[49]  S. G. Potts, B. A. Woodcock, S. P. M. Roberts et al., “Enhancing pollinator biodiversity in intensive grasslands,” Journal of Applied Ecology, vol. 46, no. 2, pp. 369–379, 2009.
[50]  A. Pauw and J. A. Hawkins, “Reconstruction of historical pollination rates reveals linked declines of pollinators and plants,” Oikos, vol. 120, no. 3, pp. 344–349, 2011.
[51]  A. E. Magurran, Measuring Biology Diversity, Blackwell Publishing, Oxford, UK, 2004.
[52]  B. J. Brosi, P. R. Armsworth, and G. C. Daily, “Optimal design of agricultural landscapes for pollination services,” Conservation Letters, vol. 1, pp. 27–36, 2008.
[53]  J. Memmott, P. G. Craze, N. M. Waser, and M. V. Price, “Global warming and the disruption of plant-pollinator interactions,” Ecology Letters, vol. 10, no. 8, pp. 710–717, 2007.
[54]  O. Gordo and J. J. Sanz, “Temporal trends in phenology of the honey bee Apis mellifera (L.) and the small white Pieris rapae (L.) in the Iberian Peninsula (1952–2004),” Ecological Entomology, vol. 31, no. 3, pp. 261–268, 2006.
[55]  A. M. M. González, B. Dalsgaard, J. Ollerton et al., “Effects of climate on pollination networks in the West Indies,” Journal of Tropical Ecology, vol. 25, no. 5, pp. 493–506, 2009.
[56]  M. Kuhlmann, D. Guo, R. Veldtman, and J. Donaldson, “Consequences of warming up a hotspot: species range shifts within a centre of bee diversity,” Diversity and Distributions, vol. 18, no. 9, pp. 885–897, 2012.
[57]  O. Schweiger, J. C. Biesmeijer, R. Bommarco et al., “Multiple stressors on biotic interactions: how climate change and alien species interact to affect pollination,” Biological Reviews, vol. 85, no. 4, pp. 777–795, 2010.
[58]  A. Hudewenz, A.-M. Klein, C. Scherber et al., “Herbivore and pollinator responses to grassland management intensity along experimental changes in plant species richness,” Biological Conservation, vol. 150, no. 1, pp. 42–52, 2012.
[59]  R. L. Callum, J. J. Bennie, D. T. Chris, J. A. Hodgson, and J. R. Wilson, “Local and landscape management of an expanding range margin under climate change,” Journal of Applied Ecology, vol. 49, pp. 552–561, 2012.
[60]  S. Krishnan, C. G. Kushalappa, R. U. Shaanker, and J. Ghazoul, “Status of pollinators and their efficiency in coffee fruit set in a fragmented landscape mosaic in South India,” Basic and Applied Ecology, vol. 13, no. 3, pp. 277–285, 2012.
[61]  A. S. Hadley and M. G. Betts, “The effects of landscape fragmentation on pollination dynamics: absence of evidence not evidence of absence,” Biological Reviews, vol. 87, no. 3, pp. 526–544, 2012.
[62]  N. M. Williams, J. Regetz, and C. Kremen, “Landscape-scale resources promote colony growth but not reproductive performance of bumble bees,” Ecology, vol. 93, no. 5, pp. 1049–1058, 2012.
[63]  A. Sárospataki, A. Báldi, P. Batáry, Z. Józan, S. Erd?s, and T. Rédei, “Factors affecting the structure of bee assemblages in extensively and intensively grazed grasslands in Hungary,” Community Ecology, vol. 10, no. 2, pp. 182–188, 2009.
[64]  F. Kohler, J. Verhulst, R. van Klink, and D. Kleijn, “At what spatial scale do high-quality habitats enhance the diversity of forbs and pollinators in intensively farmed landscapes?” Journal of Applied Ecology, vol. 45, no. 3, pp. 753–762, 2008.
[65]  M. Otieno, B. A. Woodcock, A. Wilby et al., “Local management and landscape drivers of pollination and biological control services in a Kenyan agro-ecosystem,” Biological Conservation, vol. 144, no. 10, pp. 2424–2431, 2011.
[66]  S. E. R. Hoover, J. J. Ladley, A. A. Shchepetkina, M. Tisch, S. P. Gieseg, and J. M. Tylianakis, “Warming, CO2, and nitrogen deposition interactively affect a plant-pollinator mutualism,” Ecology Letters, vol. 15, no. 3, pp. 227–234, 2012.
[67]  G. Carré, P. Roche, R. Chifflet et al., “Landscape context and habitat type as drivers of bee diversity in European annual crops,” Agriculture, Ecosystems and Environment, vol. 133, no. 1-2, pp. 40–47, 2009.
[68]  F. Jauker, T. Diek?tter, F. Schwarzbach, and V. Wolters, “Pollinator dispersal in an agricultural matrix: opposing responses of wild bees and hoverflies to landscape structure and distance from main habitat,” Landscape Ecology, vol. 24, no. 4, pp. 547–555, 2009.
[69]  L. G. Carvalheiro, C. L. Seymour, R. Veldtman, and S. W. Nicolson, “Pollination services decline with distance from natural habitat even in biodiversity-rich areas,” Journal of Applied Ecology, vol. 47, no. 4, pp. 810–820, 2010.
[70]  P. E. Lentini, T. G. Martin, P. Gibbons, J. Fischer, and S. A. Cunningham, “Supporting wild pollinators in a temperate agricultural landscape: maintaining mosaics of natural features and production,” Biological Conservation, vol. 149, pp. 84–92, 2012.
[71]  E. Ockinger and H. G. Smith, “Semi-natural grasslands as population sources for pollinating insects in agricultural landscapes,” Journal of Applied Ecology, vol. 44, pp. 50–59, 2007.
[72]  I. Steffan-Dewenter and C. Westphal, “The interplay of pollinator diversity, pollination services and landscape change,” Journal of Applied Ecology, vol. 45, no. 3, pp. 737–741, 2008.
[73]  N. E. Sj?din, J. Bengtsson, and B. Ekbom, “The influence of grazing intensity and landscape composition on the diversity and abundance of flower-visiting insects,” Journal of Applied Ecology, vol. 45, no. 3, pp. 763–772, 2008.
[74]  T. Kehinde and M. J. Samways, “Endemic pollinator response to organic vs. conventional farming and landscape context in the Cape Floristic Region biodiversity hotspot,” Agriculture, Ecosystems and Environment, vol. 146, pp. 162–167, 2012.
[75]  S. Jha and J. H. Vandermeer, “Impacts of coffee agroforestry management on tropical bee communities,” Biological Conservation, vol. 143, no. 6, pp. 1423–1431, 2010.
[76]  C. Brittain and S. G. Potts, “The potential impacts of insecticides on the life-history traits of bees and the consequences for pollination,” Basic and Applied Ecology, vol. 12, no. 4, pp. 321–331, 2011.
[77]  R. T. Gilman, N. S. Fabina, K. C. Abbott, and N. E. Rafferty, “Evolution of plant-pollinator mutualisms in response to climate change,” Evolutionary Applications, vol. 5, no. 1, pp. 2–16, 2012.
[78]  N. Pettorelli, “Climate changes as a main driver of ecological research,” Journal of Applied Ecology, vol. 49, pp. 542–545, 2012.
[79]  L. A. Garibaldi, I. Steffan-Dewenter, R. Winfree, et al., “Wild Pollinators Enhance Fruit Set of Crops Regardless of Honey Bee Abundance,” Science. 2013.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133