The symbiotic associations between beetles and ants have been observed in at least 35 beetle families. Among myrmecophiles, beetles exhibit the most diverse behavioral and morphological adaptations to a life with ants. These various associations have historically been grouped into discrete but overlapping behavioral categories, many of which are still used in the modern literature. While these behavioral classifications provide a rich foundation for the study of ant-beetle symbioses, the application of these systems in future studies may be less than effective. Since morphological characteristics often provide the only information of myrmecophilous beetles, they should be studied in a species-by-species fashion, as behavioral data are often limited or unavailable. Similarly, behavioral studies should focus on the target species at hand, avoiding discrete classification schemes. I formally propose the rejection of any classification scheme, in order to promote future studies of myrmecophily in both taxonomic and evolutionary studies. 1. Introduction Myrmecophily is a charismatic biological phenomenon that defines the associations, whether casual or intimate, of various organisms with ants. Myrmecophilous life habits have been observed in at least 95 families of arthropods, including several genera of isopods, pseudoscorpions, many araneeid spiders, mites, millipedes, and close to 100 families of insects [1]. Among insects, the beetles are often the most easily recognized and morphologically distinct myrmecophiles, leading to a significant body of work. Currently, at least 35 beetle families are known to be associated with ants in some form or another [1, 2], but for at least fifteen of these families behavioral data are entirely absent. In many cases, presumed ant associates, both within the Coleoptera and other myrmecophilous groups, are cited as myrmecophiles based on unobserved interactions with ants, especially if specimens were collected in or near an ant nest. Specifically, beetles are considered to be myrmecophilous if they bear unique morphological characteristics presumed to be linked to myrmecophily. These morphological modifications frequently include combinations of enlarged or reduced antennae, reddish or “ant-red” integument, and, less often, modified mouthparts or appendages that are sometimes associated with a myrmecophilous habit [3]. Perhaps the most commonly documented and presumably convincing evidence for a life with ants is the presence of trichomes, or tufts of setae associated with exocrine glands, but similar clusters of
References
[1]
B. H?lldobler and E. O. Wilson, The Ants, Belknap Press, Cambridge, Mass, USA, 1990.
[2]
E. O. Wilson, The Insect Societies, Belknap Press, Cambridge, Mass, USA, 1971.
[3]
W. M. Wheeler, Ants, Their Structure, Development and Behavior, Columbia University Press, New York, NY, USA, 1910.
[4]
E. Wasmann, “Vergleichende studien über ameiseng?ste und termiteng?ste,” Tijdschrift voor Entomologie, vol. 33, pp. 27–96, 1890.
[5]
J. Krikken and J. Huijbregts, “Southeast Asian Termitodius: a taxonomic review, with descriptions of four new species (Coleoptera: Aphodiidae),” Zoologische Mededelingen Leiden, vol. 61, no. 7, pp. 97–111, 1987.
[6]
M. S. Caterino, “Descriptions of the first Chlamydopsinae (Coleoptera: Histeridae) from Wallacea,” Tijdschrift voor Entomologie, vol. 143, no. 3, pp. 267–278, 2000.
[7]
M. Maruyama, “A new genus and species of flightless, microphthalmic Corythoderini (Coleoptera: Scarabaeidae: Aphodiinae) from Cambodia, associated with Macrotermes termites,” Zootaxa, vol. 3555, pp. 83–88, 2012.
[8]
B. H?lldobler, “Communication between ants and their guests,” Scientific American, vol. 224, pp. 86–93, 1971.
[9]
S. T. O'Keefe, “Ant-like stone beetles, ants, and their associations (Coleoptera: Scydmaenidae; Hymenoptera: Formicidae; Isoptera),” Journal of the New York Entomological Society, vol. 108, no. 3-4, pp. 273–303, 2000.
[10]
W. Moore, X. B. Song, and A. di Giulio, “The larva of Eustra (Coleoptera, Paussinae, Ozaenini): a facultative associate of ants,” ZooKeys, vol. 90, pp. 63–82, 2011.
[11]
S. F. Geiselhardt, K. Peschke, and P. Nagel, “A review of myrmecophily in ant nest beetles (Coleoptera: Carabidae: Paussinae): linking early observations with recent findings,” Naturwissenschaften, vol. 94, no. 11, pp. 871–894, 2007.
[12]
J. Orivel, P. Servigne, P. Cerdan, A. Dejean, and B. Corbara, “The ladybird Thalassa saginata, an obligatory myrmecophile of Dolichodeurs bidens ant colonies,” Naturwissenschaften, vol. 91, no. 2, pp. 97–100, 2004.
[13]
A. Vantaux, O. Roux, A. Magro, and J. Orivel, “Evolutionary perspectives on myrmecophily in ladybirds,” Psyche, vol. 2012, Article ID 591570, 7 pages, 2012.
[14]
R. K. Vander Meer and D. P. Wojcik, “Chemical mimicry in the myrmecophilous beetle Myrmecaphodius excavaticollis,” Science, vol. 218, no. 4574, pp. 806–808, 1982.
[15]
G. D. Alpert, “A comparative study of the symbiotic relationships between beetles of the genus Cremastocheilus (Coleoptera, Scarabaeidae) and their host ants (Hymenoptera, Formicidae),” Sociobiology, vol. 25, no. 1, pp. 1–266, 1994.
[16]
F. Z. Vaz-De-Mello, J. N. C. Louzada, and J. H. Schoereder, “New data and comments on scarabaeidae (Coleoptera: Scarabaeoidea) associated with attini (Hymenoptera: Formicidae),” Coleopterists Bulletin, vol. 52, no. 3, pp. 209–216, 1998.
[17]
F. T. Krell, “Dung beetles unharmed by army ants in tropical Africa (Coleoptera: Scarabaeidae; Hymenoptera: Formicidae, Dorylinae),” Coleopterists Bulletin, vol. 53, no. 4, pp. 325–328, 1999.
[18]
J. F. Lawrence and H. Reichardt, “Revision of the genera Gnostus and Fabrasia (Coleoptera: Ptinidae),” Psyche, vol. 73, no. 1, pp. 30–45, 1966.
[19]
T. K. Philips, “Phylogenetic analysis of the new world Ptininae (Coleoptera: Bostrichoidea),” Systematic Entomology, vol. 25, no. 2, pp. 235–262, 2000.
[20]
E. Wasmann, Kritisches Verzeichniss der Myrmecophilen und Termitophilen Arthropoden, Berlin, Germany, 1894.
[21]
F. Silvestri, “Contribuzioni alla conoscenza dei Mirmecofili, I: osservazioni su alcuni mirmecofili dei dintorni di Portici,” Annuario del Museo Zoologie della R. Universita di Napoli, vol. 1, no. 13, pp. 1–5, 1903.
[22]
H. Donisthorpe, “The ants (Formicidae), and some myrmecophiles, of Sicily,” The Entomologist’s Record, vol. 38, no. 12, pp. 6–9, 1927.
[23]
D. H. Kistner, “Social and evolutionary significance of social insect symbionts,” in Social Insects, H. R. Hermann, Ed., vol. 1, pp. 339–413, Academia Press, New York, NY, USA, 1979.
[24]
R. D. Akre and C. W. Rettenmeyer, “Behavior of Staphylinidae associated with army ants (Formicidae: Ecitonini),” Journal of the Kansas Entomological Society, vol. 39, no. 4, pp. 745–782, 1966.
[25]
F. Maerkel, “Beitr?ge zur Kenntniss der unter Ameisen lebenden, Insekten, Erstes Stück,” Germar’s Zeitschrift für die Entomologie, vol. 3, pp. 203–225, 1841.
[26]
F. Maerkel, “Beitr?ge zur Kenntniss der unter Ameisen lebenden, Insekten, Zweites Stück,” Germar’s Zeitschrift für die Entomologie, vol. 5, pp. 193–271, 1844.
[27]
K. Sch?nrogge, J. C. Wardlaw, J. A. Thomas, and G. W. Elmes, “Polymorphic growth rates in myrmecophilous insects,” Proceedings of the Royal Society B, vol. 267, no. 1445, pp. 771–777, 2000.
[28]
C. Delamare-Deboutteville, “Recherches sur les Collemboles termitophiles et myrmecophiles (écologie, éthologie, systématique),” Archives de Zoologie Experimentale et Generale, vol. 85, no. 5, pp. 261–425, 1948.
[29]
R. Paulian, “Observations sur les Coléoptères commensaux d’Anomma nigricans en C?te d'Ivoire,” Annales des Sciences Naturrelles, vol. 10, no. 1, pp. 79–102, 1948.
[30]
V. Franc, “Myrmecophilous beetles of Slovakia with special reference to their endangerment and perspectives for protection,” Acta Universitatis Carolinae Biologica, vol. 36, pp. 299–324, 1992.
[31]
A. Forel, “Les formicides de la Province D’Oran (Algerié),” Bulletin de la Société Vaudoise des Sciences Naturelles, vol. 30, no. 114, pp. 1–47, 1894.
[32]
E. Wasmann, “Zur Kenntnis einiger schwieriger Thorictus-Arten,” Deutsche Entomologische Zeitschrift, vol. 39, no. 1, pp. 41–44, 1895.
[33]
K. Fiedler, “Systematic, evolutionary, and ecological implications of myrmecophily within the Lycaenidae (Insecta: Lepidopera: Papilionoidea),” Bonner Zoologische Monographien, vol. 31, pp. 1–210, 1991.
[34]
N. E. Pierce, M. F. Braby, A. Heath et al., “The ecology and evolution of ant association in the Lycaenidae (Lepidoptera),” Annual Review of Entomology, vol. 47, pp. 733–771, 2002.
[35]
A. W. Shingleton and D. L. Stern, “Molecular phylogenetic evidence for multiple gains or losses of ant mutualism within the aphid genus Chaitophorus,” Molecular Phylogenetics and Evolution, vol. 26, no. 1, pp. 26–35, 2003.
[36]
C. W. Rettenmeyer, M. E. Rettenmeyer, J. Joseph, and S. M. Berghoff, “The largest animal association centered on one species: the army ant eciton burchellii and its more than 300 associates,” Insectes Sociaux, vol. 58, no. 3, pp. 281–292, 2011.
[37]
D. H. Kistner and H. R. Jacobson, “Cladistic analysis and taxonomic revision of the ecitophilous tribe Ecitocharini with studies of their behavior and evolution (Coleoptera, Staphylinidae, Aleocharinae),” Sociobiology, vol. 17, pp. 333–480, 1990.
[38]
T. Akino, “Chemical camouflage by myrmecophilous beetles Zyras comes (Coleoptera: Staphylinidae) and Diaritiger fossulatus (Coleoptera: Pselaphidae) to be integrated into the nest of Lasius fuliginosus (Hymenoptera: Formicidae),” Chemoecology, vol. 12, no. 2, pp. 83–89, 2002.
[39]
R. W. Howard, C. A. McDaniel, and G. J. Blomquist, “Chemical mimicry as an integrating mechanism: cuticular hydrocarbons of a termitophile and its host,” Science, vol. 210, no. 4468, pp. 431–433, 1980.
[40]
R. W. Howard and G. J. Blomquist, “Ecological, behavioral, and biochemical aspects of insect hydrocarbons,” Annual Review of Entomology, vol. 50, pp. 371–393, 2005.
[41]
M. Stoeffler, T. S. Maier, T. Tolasch, and J. L. M. Steidle, “Foreign-language skills in rove-beetles? Evidence for chemical mimicry of ant alarm pheromones in myrmecophilous Pella beetles (Coleoptera: Staphylinidae),” Journal of Chemical Ecology, vol. 33, no. 7, pp. 1382–1392, 2007.
[42]
J. D. Ellis and H. R. Hepburn, “An ecological digest of the small hive beetle (Aethina tumida), a symbiont in honey bee colonies (Apis mellifera),” Insectes Sociaux, vol. 53, no. 1, pp. 8–19, 2006.
[43]
B. Stadler, P. Kindlmann, P. ?milauer, and K. Fiedler, “A comparative analysis of morphological and ecological characters of European aphids and lycaenids in relation to ant attendance,” Oecologia, vol. 135, no. 3, pp. 422–430, 2003.
[44]
M. J. Paulsen, “Observations on possible myrmecophily in Stephanucha pilipennis Kraatz (Coleoptera: Scarabaeidae: Cetoniinae) in Western Nebraska,” The Coleopterists Bulletin, vol. 56, no. 3, pp. 451–452, 2002.
[45]
B. C. Ratcliffe, “Notes on the biology of Euphoriaspis hirtipes (Horn) and descriptions of the larva and pupa (Coleoptera: Scarabaeidae),” The Coleopterists Bulletin, vol. 30, no. 3, pp. 217–225, 1976.
[46]
G. Mynhardt and J. W. Wenzel, “Phylogenetic analysis of the myrmecophilous Cremastocheilus Knoch (Coleoptera, Scarabaeidae, Cetoniinae), based on external adult morphology,” ZooKeys, vol. 34, no. 2, pp. 129–140, 2010.
[47]
M. Stoeffler, T. Tolasch, and J. L. M. Steidle, “Three beetles-three concepts. Different defensive strategies of congeneric myrmecophilous beetles,” Behavioral Ecology and Sociobiology, vol. 65, no. 8, pp. 1605–1613, 2011.
[48]
J. F. Godeau, J. L. Hemptinne, A. F. G. Dixon, and J. C. Verhaeghe, “Reaction of ants to, and feeding biology of, a congeneric myrmecophilous and non-myrmecophilous ladybird,” Journal of Insect Behavior, vol. 22, no. 3, pp. 173–185, 2009.
[49]
F. T. Krell and T. Keith Philips, “Formicdubius Philips & Scholtz from South Africa, a junior synonym of Haroldius Boucomont, and a survey of the trichomes in the African species (Coleoptera, Scarabaeidae, Onthophagini),” ZooKeys, vol. 34, no. 2, pp. 41–48, 2010.
[50]
R. D. Zhantiev, “Ecology and classification of dermestid beetles (Coleoptera, Dermestidae) of the Palaearctic fauna,” Entomological Review, vol. 89, no. 2, pp. 157–174, 2009.