全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Blood Level Omega-3 Fatty Acids as Risk Determinant Molecular Biomarker for Prostate Cancer

DOI: 10.1155/2013/875615

Full-Text   Cite this paper   Add to My Lib

Abstract:

Previous researches involving dietary methods have shown conflicting findings. Authors sought to assess the association of prostate cancer risk with blood levels of omega-3 polyunsaturated fatty acids (n-3 PUFA) through a meta-analysis of human epidemiological studies in available online databases (July, 2012). After critical appraisal by two independent reviewers, Newcastle-Ottawa Quality Assessment Scale (NOQAS) was used to grade the studies. Six case control and six nested case control studies were included. Results showed nonsignificant association of overall effect estimates with total or advanced prostate cancer or high-grade tumor. High blood level of alpha-linolenic acid (ALA) had nonsignificant positive association with total prostate cancer risk. High blood level of docosapentaenoic acid (DPA) had significant negative association with total prostate cancer risk. Specific n-3 PUFA in fish oil, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) had positive association with high-grade prostate tumor risk only after adjustment of interstudy variability. There is evidence that high blood level of DPA that is linked with reduced total prostate cancer risk and elevated blood levels of fish oils, EPA, and DHA is associated with high-grade prostate tumor, but careful interpretation is needed due to intricate details involved in prostate carcinogenesis and N-3 PUFA metabolism. 1. Introduction Prostate cancer in the recent decades has been shown to cause remarkable morbidity and mortality among males [1–3]. Although epidemiological research has identified several risk factors that can contribute to prostate cancer development, such as increasing age, family history, and ethnicity, particularly African American background, recent evidence has also suggested a role for chronic prostatic inflammation [4–6]. As such, the positive potential benefits of anti-inflammatory agents in risk reduction and prevention of prostate cancer have been sought by researchers [7, 8]. Specifically, dietary components such as omega-3 polyunsaturated fatty acids (n-3 PUFA) are of interest due to their established cardiovascular benefit, neuroprotectiveness, and anti-inflammatory effects [9–12]. These dietary n-3 PUFA, especially short-chain n-3 PUFA, are found mainly in nuts and vegetables, while long-chain n-3 PUFA are largely obtained from marine fish oil and to lesser extent from conversion of alpha-linolenic acid (ALA). ALA, which is considered an essential short-chain fatty acid because it cannot be synthesized by the human body, is an important source of

References

[1]  American Cancer Society, Cancer Facts & Figures 2011, American Cancer Society, Atlanta, Ga, USA, 2011.
[2]  A. Jemal, R. Siegel, J. Xu, and E. Ward, “Cancer statistics, 2010,” CA—A Cancer Journal for Clinicians, vol. 60, no. 5, pp. 277–300, 2010.
[3]  A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, and D. Forman, “Global cancer statistics,” CA—A Cancer Journal for Clinicians, vol. 61, no. 2, pp. 69–90, 2011.
[4]  G. P. Haas, N. Delongchamps, O. W. Brawley, C. Y. Wang, and G. de la Roza, “The worldwide epidemiology of prostate cancer: perspectives from autopsy studies,” The Canadian Journal of Urology, vol. 15, no. 1, pp. 3866–3871, 2008.
[5]  D. G. Bostwick, H. B. Burke, D. Djakiew et al., “Human prostate cancer risk factors,” Cancer, vol. 101, no. 10, pp. 2371–2490, 2004.
[6]  A. M. De Marzo, E. A. Platz, S. Sutcliffe et al., “Inflammation in prostate carcinogenesis,” Nature Reviews Cancer, vol. 7, no. 4, pp. 256–269, 2007.
[7]  J. M. Chan, P. H. Gann, and E. L. Giovannucci, “Role of diet in prostate cancer development and progression,” Journal of Clinical Oncology, vol. 23, pp. 8152–8160, 2005.
[8]  J. M. Chan, M. J. Stampfer, J. Ma, P. H. Gann, J. M. Gaziano, and E. L. Giovannucci, “Dairy products, calcium, and prostate cancer risk in the physicians' health study,” The American Journal of Clinical Nutrition, vol. 74, no. 4, pp. 549–554, 2001.
[9]  J. M. Chan, V. Weinberg, M. J. Magbanua et al., “Nutritional supplements, COX-2 and IGF-1 expression in men on active surveillance for prostate cancer,” Cancer Causes Control, vol. 22, pp. 141–150, 2011.
[10]  K. C. McCowen and B. R. Bistrian, “Essential fatty acids and their derivatives,” Current Opinion in Gastroenterology, vol. 21, pp. 207–215.
[11]  L. Hooper, R. A. Harrison, C. D. Summerbell, et al., “Risks and benefits of omega 3 fats for mortality, cardiovascular disease, and cancer: systematic review,” British Medical Journal, vol. 332, pp. 752–760, 2006, http://www.bmj.com/content/332/7544/752.
[12]  I. A. Brouwer, “Omega-3 PUFA: good or bad for prostate cancer?” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 79, no. 3–5, pp. 97–99, 2008.
[13]  S. L. Huffman, R. K. Harika, A. Eilander, and S. J. Osendarp, “Essential fats: how do they affect growth and development of infants and young children in developing countries? A literature review,” Maternal & Child Nutrition, vol. 7, supplement 3, pp. 44–65, 2011.
[14]  M. Carayol, P. Grosclaude, and C. Delpierre, “Prospective studies of dietary alpha-linolenic acid intake and prostate cancer risk: a meta-analysis,” Cancer Causes and Control, vol. 21, no. 3, pp. 347–355, 2010.
[15]  J. A. Simon, Y. H. Chen, and S. Bent, “The relation of α-linolenic acid to the risk of prostate cancer: a systematic review and meta-analysis,” The American Journal of Clinical Nutrition, vol. 89, no. 5, pp. 1558S–1564S, 2009.
[16]  K. M. Szymanski, D. C. Wheeler, and L. A. Mucci, “Fish consumption and prostate cancer risk: a review and meta-analysis,” The American Journal of Clinical Nutrition, vol. 92, no. 5, pp. 1223–1233, 2010.
[17]  W. C. Willet, “Specific fatty acids and risks of breast and prostate cancer: dietary intake,” The American Journal of Clinical Nutrition, vol. 66 6, supplement, pp. 1557S–1563S, 1997.
[18]  P. D. Terry, T. E. Rohan, and A. Wolk, “Intakes of fish and marine fatty acids and the risks of cancers of the breast and prostate and of other hormone-related cancers: a review of the epidemiologic evidence,” The American Journal of Clinical Nutrition, vol. 77, no. 3, pp. 532–543, 2003.
[19]  P. Astorg, “Dietary n-6 and n-3 polyunsaturated fatty acids and prostate cancer risk: a review of epidemiological and experimental evidence,” Cancer Causes and Control, vol. 15, no. 4, pp. 367–386, 2004.
[20]  S. C. Larsson, M. Kumlin, M. Ingelman-Sundberg, and A. Wolk, “Dietary long-chain n-3 fatty acids for the prevention of cancer: a review of potential mechanisms,” The American Journal of Clinical Nutrition, vol. 79, no. 6, pp. 935–945, 2004.
[21]  L. K. Dennis, L. G. Snetselaar, B. J. Smith, R. E. Stewart, and M. E. C. Robbins, “Problems with the assessment of dietary fat in prostate cancer studies,” American Journal of Epidemiology, vol. 160, no. 5, pp. 436–444, 2004.
[22]  N. M. Attar-Bashi, A. G. Frauman, and A. J. Sinclair, “α-linolenic acid and the risk of prostate cancer. What is the evidence?” Journal of Urology, vol. 171, no. 4, pp. 1402–1407, 2004.
[23]  R. W. L. Ma and K. Chapman, “A systematic review of the effect of diet in prostate cancer prevention and treatment,” Journal of Human Nutrition and Dietetics, vol. 22, no. 3, pp. 187–199, 2009.
[24]  C. H. MacLean, S. J. Newberry, W. A. Mojica et al., “Effects of omega-3 fatty acids on cancer risk: a systematic review,” JAMA, vol. 295, no. 4, pp. 403–415, 2006.
[25]  M. E. Chua and J. S. Dy, “Relationship of dietary intake of omega-3 and omega-6 fatty acids with risk of prostate cancer development,” Philippine Jouranl of Urology. In press.
[26]  L. Kohlmeier, “Future of dietary exposure assessment,” The American Journal of Clinical Nutrition, vol. 61, pp. 702S–709S, 1995.
[27]  T. Byers and K. Gieseker, “Issues in the design and interpretation of studies of fatty acids and cancer in humans,” The American Journal of Clinical Nutrition, vol. 66, no. 6, pp. 1541S–1547S, 1997.
[28]  L. F. Andersen, K. Solvoll, and C. A. Drevon, “Very-long-chain n-3 fatty acids as biomarkers for intake of fish and n- 3 fatty acid concentrates,” The American Journal of Clinical Nutrition, vol. 64, no. 3, pp. 305–311, 1996.
[29]  A. Wolk, M. Furuheim, and B. Vessby, “Fatty acid composition of adipose tissue and serum lipids are valid biological markers of dairy fat intake in men,” Journal of Nutrition, vol. 131, no. 3, pp. 828–833, 2001.
[30]  P. L. Zock, R. P. Mensink, J. Harryvan, J. H. M. De Vries, and M. B. Katan, “Fatty acids in serum cholesteryl esters as quantitative biomarkers of dietary intake in humans,” American Journal of Epidemiology, vol. 145, no. 12, pp. 1114–1122, 1997.
[31]  L. Arab and J. Akbar, “Biomarkers and the measurement of fatty acids,” Public Health Nutrition, vol. 5, pp. 865–871, 2002.
[32]  A. Baylin, K. K. Mi, A. Donovan-Palmer et al., “Fasting whole blood as a biomarker of essential fatty acid intake in epidemiologic studies: comparison with adipose tissue and plasma,” American Journal of Epidemiology, vol. 162, no. 4, pp. 373–381, 2005.
[33]  M. E. Chua, M. C. Sio, M. E. Sorongon, and M. J. Morales, “The relevance of serum levels of long chain omega-3 polyunsaturated fatty acids and prostate cancer risk: a Meta-analysis,” Canadian Urological Association Journal. In press.
[34]  D. Moher, A. Liberati, J. Tetzlaff, and D. G. Altman, “Preferred reporting items nfor systematic reviews and meta-analyses: the PRISMA statement,” Annals of Internal Medicine, vol. 151, pp. 264–269, 2009.
[35]  K. A. Hanash, A. Al-Othaimeen, S. Kattan et al., “Prostatic carcinoma: a nutritional disease? Conflicting data from the Kingdom of Saudi Arabia,” Journal of Urology, vol. 164, no. 5, pp. 1570–1572, 2000.
[36]  E. Dewailly, G. Mulvad, H. S. Pedersen, J. C. Hansen, N. Behrendt, and J. P. H. Hansen, “Inuit are protected against prostate cancer,” Cancer Epidemiology Biomarkers and Prevention, vol. 12, no. 9, pp. 926–927, 2003.
[37]  N. E. Allen, C. Sauvaget, A. W. Roddam et al., “A prospective study of diet and prostate cancer in Japanese men,” Cancer Causes and Control, vol. 15, no. 9, pp. 911–920, 2004.
[38]  J. Kositsawat, R. C. Flanigan, M. Meydani, Y. K. Choi, and V. L. Freeman, “The ratio of oleic-to-stearic acid in the prostate predicts biochemical failure after radical prostatectomy for localized prostate cancer,” Journal of Urology, vol. 178, no. 6, pp. 2391–2396, 2007.
[39]  N. E. Allen, T. J. Key, P. N. Appleby et al., “Animal foods, protein, calcium and prostate cancer risk: the European prospective investigation into cancer and nutrition,” British Journal of Cancer, vol. 98, no. 9, pp. 1574–1581, 2008.
[40]  D. E. Laaksonen, J. A. Laukkanen, L. Niskanen et al., “Serum linoleic and total polyunsaturated fatty acids in relation to prostate and other cancers: a population-based cohort study,” International Journal of Cancer, vol. 111, no. 3, pp. 444–450, 2004.
[41]  A. G. Schuurman, P. A. van den Brandt, E. Dorant, H. A. Brants, and R. A. Goldbohm, “Association of energy and fat intake with prostate carcinoma risk: results from The Netherlands Cohort Study,” Cancer, vol. 86, no. 6, pp. 1019–1027, 1999.
[42]  M. F. Leitzmann, M. J. Stampfer, D. S. Michaud et al., “Dietary intake of n-3 and n-6 fatty acids and the risk of prostate cancer,” The American Journal of Clinical Nutrition, vol. 80, no. 1, pp. 204–216, 2004.
[43]  M. L. Neuhouser, M. J. Barnett, A. R. Kristal et al., “(n-6) PUFA increase and dairy foods decrease prostate cancer risk in heavy smokers,” Journal of Nutrition, vol. 137, no. 7, pp. 1821–1827, 2007.
[44]  S. Y. Park, S. P. Murphy, L. R. Wilkens, B. E. Henderson, and L. N. Kolonel, “Fat and meat intake and prostate cancer risk: the Multiethnic Cohort Study,” International Journal of Cancer, vol. 121, no. 6, pp. 1339–1345, 2007.
[45]  W. J. Aronson, R. J. Barnard, S. J. Freedland et al., “Growth inhibitory effect of low fat diet on prostate cancer cells: results of a prospective, randomized dietary intervention trial in men with prostate cancer,” Journal of Urology, vol. 183, no. 1, pp. 345–350, 2010.
[46]  W. J. Aronson, J. A. Glaspy, S. T. Reddy, D. Reese, D. Heber, and D. Bagga, “Modulation of omega-3/omega-6 polyunsaturated ratios with dietary fish oils in men with prostate cancer,” Urology, vol. 58, no. 2, pp. 283–288, 2001.
[47]  W. Demark-Wahnefried, T. J. Polascik, S. L. George et al., “Flaxseed supplementation (not dietary fat restriction) reduces prostate cancer proliferation rates in men presurgery,” Cancer Epidemiology Biomarkers and Prevention, vol. 17, no. 12, pp. 3577–3587, 2008.
[48]  D. Ornish, G. Weidner, W. R. Fair et al., “Intensive lifestyle changes may affect the progression of prostate cancer,” Journal of Urology, vol. 174, pp. 1065–1070, 2005.
[49]  C. R. Ritch, R. L. Wan, L. B. Stephens et al., “Dietary fatty acids correlate with prostate cancer biopsy grade and volume in Jamaican Men,” Journal of Urology, vol. 177, no. 1, pp. 97–101, 2007.
[50]  M. Hedelin, E. T. Chang, F. Wiklund et al., “Association of frequent consumption of fatty fish with prostate cancer risk is modified by COX-2 polymorphism,” International Journal of Cancer, vol. 120, no. 2, pp. 398–405, 2007.
[51]  E. Bidoli, R. Talamini, C. Bosetti et al., “Macronutrients, fatty acids, cholesterol and prostate cancer risk,” Annals of Oncology, vol. 16, no. 1, pp. 152–157, 2005.
[52]  J. M. Ramon, R. Bou, S. Romea et al., “Dietary fat intake and prostate cancer risk: a case-control study in Spain,” Cancer Causes and Control, vol. 11, no. 8, pp. 679–685, 2000.
[53]  J. Laura Colli and A. Colli, “Comparisons of prostate cancer mortality rates with dietary practices in the United States,” Urologic Oncology, vol. 23, no. 6, pp. 390–398, 2005.
[54]  A. E. Norrish, R. T. Jackson, S. J. Sharpe, and C. M. Skeaff, “Men who consume vegetable oils rich in monounsaturated fat: their dietary patterns and risk of prostate cancer (New Zealand),” Cancer Causes and Control, vol. 11, no. 7, pp. 609–615, 2000.
[55]  V. Fradet, I. Cheng, G. Casey, and J. S. Witte, “Dietary omega-3 fatty acids, cyclooxygenase-2 genetic variation, and aggressive prostate cancer risk,” Clinical Cancer Research, vol. 15, pp. 2559–2566, 2009.
[56]  R. K. Severson, A. M. Y. Nomura, J. S. Grove, and G. N. Stemmermann, “A prospective study of demographics, diet, and prostate cancer among men of Japanese ancestry in Hawaii,” Cancer Research, vol. 49, no. 7, pp. 1857–1860, 1989.
[57]  J. E. Chavarro, M. J. Stampfer, M. N. Hall, H. D. Sesso, and J. Ma, “A 22-y prospective study of fish intake in relation to prostate cancer incidence and mortality,” The American Journal of Clinical Nutrition, vol. 88, no. 5, pp. 1297–1303, 2008.
[58]  D. O. Koralek, U. Peters, G. Andriole et al., “A prospective study of dietary alpha-linolenic acid and the risk of prostate cancer (United States),” Cancer Causes and Control, vol. 17, no. 6, pp. 783–791, 2006.
[59]  P. K. Mills, W. L. Beeson, R. L. Phillips, and G. E. Fraser, “Cohort study of diet, lifestyle, and prostate cancer in Adventist men,” Cancer, vol. 64, no. 3, pp. 598–604, 1989.
[60]  K. Augustsson, D. S. Michaud, E. B. Rimm et al., “A prospective study of intake of fish and marine fatty acids and prostate cancer,” Cancer Epidemiology Biomarkers and Prevention, vol. 12, no. 1, pp. 64–67, 2003.
[61]  D. S. Michaud, K. Augustsson, E. B. Rimm, M. J. Stampfer, W. C. Willet, and E. Giovannucci, “A prospective study on intake of animal products and risk of prostate cancer,” Cancer Causes and Control, vol. 12, no. 6, pp. 557–567, 2001.
[62]  A. R. Kristal, K. B. Arnold, M. L. Neuhouser et al., “Diet, supplement use, and prostate cancer risk: results from the prostate cancer prevention trial,” American Journal of Epidemiology, vol. 172, no. 5, pp. 566–577, 2010.
[63]  J. K. Virtanen, D. Mozaffarian, S. E. Chiuve, and E. B. Rimm, “Fish consumption and risk of major chronic disease in men,” The American Journal of Clinical Nutrition, vol. 88, no. 6, pp. 1618–1625, 2008.
[64]  P. Terry, P. Lichtenstein, M. Feychting, A. Ahlbom, and A. Wolk, “Fatty fish consumption and risk of prostate cancer,” The Lancet, vol. 357, no. 9270, pp. 1764–1766, 2001.
[65]  A. W. Hsing, J. K. McLaughlin, L. M. Schuman et al., “Diet, tobacco use, and fatal prostate cancer: results from the Lutheran Brotherhood Cohort study,” Cancer Research, vol. 50, no. 21, pp. 6836–6840, 1990.
[66]  E. Giovannucci, Y. Liu, E. A. Platz, M. J. Stampfer, and W. C. Willett, “Risk factors for prostate cancer incidence and progression in the health professionals follow-up study,” International Journal of Cancer, vol. 121, no. 7, pp. 1571–1578, 2007.
[67]  E. Giovannucci, E. B. Rimm, G. A. Colditz et al., “A prospective study of dietary fat and risk of prostate cancer,” Journal of the National Cancer Institute, vol. 85, no. 19, pp. 1571–1579, 1993.
[68]  S. Rohrmann, E. A. Platz, C. J. Kavanaugh, L. Thuita, S. C. Hoffman, and K. J. Helzlsouer, “Meat and dairy consumption and subsequent risk of prostate cancer in a US cohort study,” Cancer Causes and Control, vol. 18, no. 1, pp. 41–50, 2007.
[69]  T. M. Pham, Y. Fujino, T. Kubo et al., “Fish intake and the risk of fatal prostate cancer: findings from a cohort study in Japan,” Public Health Nutrition, vol. 12, no. 5, pp. 609–613, 2009.
[70]  L. Le Marchand, L. N. Kolonel, L. R. Wilkens, B. C. Myers, and T. Hirohata, “Animal fat consumption and prostate cancer: a prospective study in Hawaii,” Epidemiology, vol. 5, no. 3, pp. 276–282, 1994.
[71]  F. L. Crowe, T. J. Key, P. N. Appleby et al., “Dietary fat intake and risk of prostate cancer in the European Prospective Investigation into Cancer and Nutrition,” The American Journal of Clinical Nutrition, vol. 87, no. 5, pp. 1405–1413, 2008.
[72]  P. Wallstr?m, A. Bjartell, B. Gullberg, H. Olsson, and E. Wirf?lt, “A prospective study on dietary fat and incidence of prostate cancer (Malm?, Sweden),” Cancer Causes and Control, vol. 18, no. 10, pp. 1107–1121, 2007.
[73]  A. A. Welch, S. Shakya-Shrestha, M. A. H. Lentjes, N. J. Wareham, and K.-T. Khaw, “Dietary intake and status of n-3 polyunsaturated fatty acids in a population of fish-eating and non-fish-eating meat-eaters, vegetarians, and vegans and the precursor-product ratio of α-linolenic acid to long-chain n-3 polyunsaturated fatty acids: results from the EPIC-Norfolk cohort,” The American Journal of Clinical Nutrition, vol. 92, no. 5, pp. 1040–1051, 2010.
[74]  C. R. Ritch, C. B. Brendler, R. L. Wan, K. E. Pickett, and M. H. Sokoloff, “Relationship of erythrocyte membrane polyunsaturated fatty acids and prostate-specific antigen levels in Jamaican men,” BJU International, vol. 93, no. 9, pp. 1211–1215, 2004.
[75]  Y. J. Yang, S. H. Lee, S. J. Hong, and B. C. Chung, “Comparison of fatty acid profiles in the serum of patients with prostate cancer and benign prostatic hyperplasia,” Clinical Biochemistry, vol. 32, no. 6, pp. 405–409, 1999.
[76]  M. Kobayashi, S. Sasaki, G. S. Hamada, and S. Tsugane, “Serum n-3 fatty acids, fish consumption and cancer mortality in six Japanese populations in Japan and Brazil,” Japanese Journal of Cancer Research, vol. 90, no. 9, pp. 914–921, 1999.
[77]  M. C. Schumacher, B. Laven, F. Petersson et al., “A comparative study of tissue omega-6 and omega-3 polyunsaturated fatty acids (PUFA) in benign and malignant pathologic stage T2a radical prostatectomy specimens,” Urologic Oncology. In press.
[78]  J. H. Christensen, K. Fabrin, K. Borup, N. Barber, and J. Poulsen, “Prostate tissue and leukocyte levels of n-3 polyunsaturated fatty acids in men with benign prostate hyperplasia or prostate cancer,” BJU International, vol. 97, no. 2, pp. 270–273, 2006.
[79]  F. H. Faas, A. Q. Dang, J. White, R. F. Schaefer, and D. E. Johnson, “Decreased prostatic arachidonic acid in human prostatic carcinoma,” BJU International, vol. 92, no. 6, pp. 551–554, 2003.
[80]  V. L. Freeman, M. Meydani, S. Yong et al., “Prostatic levels of fatty acids and the histopathology of localized prostate cancer,” Journal of Urology, vol. 164, no. 6, pp. 2168–2172, 2000.
[81]  G. Mamalakis, A. Kafatos, N. Kalogeropoulos, N. Andrikopoulos, G. Daskalopulos, and A. Kranidis, “Prostate cancer vs hyperplasia: relationships with prostatic and adipose tissue fatty acid composition,” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 66, no. 5-6, pp. 467–477, 2002.
[82]  N. Bakker and P. Van’t Veer, “Adipose fatty acids and cancers of the breast, prostate and colon: an ecological study,” International Journal of Cancer, vol. 72, pp. 587–591, 1997.
[83]  C. M. López Fontana, G. M. Recalde Rincón, D. Messina Lombino, A. L. Uvilla Recupero, R. F. Pérez Elizalde, and J. D. López Laur, “Body mass index and diet affect prostate cancer development,” Actas Urologicas Espanolas, vol. 33, no. 7, pp. 741–746, 2009.
[84]  L. Yi, Q. Y. Zhang, and M. T. Mi, “Role of Rho GTPase in inhibiting metastatic ability of human prostate cancer cell line PC-3 by omega-3 polyunsaturated fatty acid,” Ai Zheng, vol. 26, no. 12, pp. 1281–1286, 2007 (Chinese).
[85]  L. Letts, S. Wilkins, M. Law, D. Stewart, J. Bosch, and M. Westmorland, Guidelines for Critical Review Form: Qualitative Studies (Version 2.0). 2007, http://www.srs-mcmaster.ca/Portals/20/pdf/ebp/qualguidelines_version2.0.pdf.
[86]  J. P. T. Higgins and S. Green, Eds., Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0, The Cochrane Collaboration, 2011, http://cochrane-handbook.org/.
[87]  S. Greenland, “Quantitative methods in review of epidemiologic literature,” Epidemiology Review, vol. 9, pp. 1–30, 1986.
[88]  D. B. Petitti, Meta-Analysis, Decision Analysis, and Cost-Effectiveness Analysis: Methods for Quantitative Synthesis in Medicine, chapter 7, Oxford University Press, New York, NY, USA, 1994.
[89]  J. E. Hunter and F. L. Schmidt, “Fixed effects vs. random effects meta-analysis models: implications for cumulative research knowledge,” International Journal of Selection and Assessment, vol. 8, no. 4, pp. 275–292, 2000.
[90]  M. Borenstein, L. Hedges, J. Higgins, and H. Rothstein, Comprehensive Meta Analysis Version 2, Biostat, Englewood, NJ, USA, 2005.
[91]  M. Egger, G. D. Smith, M. Schneider, and C. Minder, “Bias in meta-analysis detected by a simple, graphical test,” British Medical Journal, vol. 315, no. 7109, pp. 629–634, 1997.
[92]  C. B. Begg and M. Mazumdar, “Operating characteristics of a rank correlation test for publication bias,” Biometrics, vol. 50, no. 4, pp. 1088–1101, 1994.
[93]  S. Duval and R. Tweedie, “Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis,” Biometrics, vol. 56, no. 2, pp. 455–463, 2000.
[94]  P. A. Godley, M. K. Campbell, P. Gallagher, F. E. A. Martinson, J. L. Mohler, and R. S. Sandier, “Biomarkers of essential fatty acid consumption and risk of prostatic carcinoma,” Cancer Epidemiology Biomarkers and Prevention, vol. 5, no. 11, pp. 889–895, 1996.
[95]  L. M. Newcomer, I. B. King, K. G. Wicklund, and J. L. Stanford, “The association of fatty acids with prostate cancer risk,” Prostate, vol. 47, no. 4, pp. 262–268, 2001.
[96]  F. A. Ukoli, P. N. Akumabor, T. C. Oguike, L. L. Dent, D. Beech, and U. Osime, “The association of plasma fatty acids with prostate cancer risk in Nigerians,” Ethnicity and Disease, vol. 19, no. 4, pp. 454–461, 2009.
[97]  J. Shannon, J. O'Malley, M. Mori, M. Garzotto, A. J. Palma, and I. B. King, “Erythrocyte fatty acids and prostate cancer risk: a comparison of methods,” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 83, no. 3, pp. 161–169, 2010.
[98]  F. A. Ukoli, J. H. Fowke, P. Akumabor et al., “The association of plasma fatty acids with prostate cancer risk in African Americans and Africans,” Journal of Health Care for the Poor and Underserved, vol. 21, no. 1, supplement, pp. 127–147, 2010.
[99]  A. E. Norrish, C. M. Skeaff, G. L. B. Arribas, S. J. Sharpe, and R. T. Jackson, “Prostate cancer risk and consumption of fish oils: a dietary biomarker-based case-control study,” British Journal of Cancer, vol. 81, no. 7, pp. 1238–1242, 1999.
[100]  S. Harvei, K. S. Bjerve, S. Tretli, E. Jellum, T. E. Robsahm, and L. Vatten, “Prediagnostic level of fatty acids in serum phospholipids: omega-3 and omega-6 fatty acids and the risk of prostate cancer,” International Journal of Cancer, vol. 71, pp. 545–551, 1997.
[101]  S. M?nnist?, P. Pietinen, M. J. Virtanen et al., “Fatty acids and risk of prostate cancer in a nested case-control study in male smokers,” Cancer Epidemiology Biomarkers and Prevention, vol. 12, no. 12, pp. 1422–1428, 2003.
[102]  J. E. Chavarro, M. J. Stampfer, H. Li, H. Campos, T. Kurth, and J. Ma, “A prospective study of polyunsaturated fatty acid levels in blood and prostate cancer risk,” Cancer Epidemiology Biomarkers and Prevention, vol. 16, no. 7, pp. 1364–1370, 2007.
[103]  F. L. Crowe, N. E. Allen, P. N. Appleby et al., “Fatty acid composition of plasma phospholipids and risk of prostate cancer in a case-control analysis nested within the European Prospective Investigation into Cancer and Nutrition,” The American Journal of Clinical Nutrition, vol. 88, no. 5, pp. 1353–1363, 2008.
[104]  S. Y. Park, L. R. Wilkens, S. M. Henning et al., “Circulating fatty acids and prostate cancer risk in a nested case-control study: the Multiethnic Cohort,” Cancer Causes and Control, vol. 20, no. 2, pp. 211–223, 2009.
[105]  T. M. Brasky, C. Till, E. White et al., “Serum phospholipid fatty acids and prostate cancer risk: results from the prostate cancer prevention trial,” American Journal of Epidemiology, vol. 173, no. 12, pp. 1429–1439, 2011.
[106]  P. H. Gann, C. H. Hennekens, F. M. Sacks, F. Grodstein, E. L. Giovannucci, and M. J. Stampfer, “Prospective study of plasma fatty acids and risk of prostate cancer,” Journal of the National Cancer Institute, vol. 86, no. 4, pp. 281–286, 1994.
[107]  G. C. Burdge and P. C. Calder, “Conversion of α-linolenic acid to longer-chain polyunsaturated fatty acids in human adults,” Reproduction Nutrition Development, vol. 45, no. 5, pp. 581–597, 2005.
[108]  G. C. Burdge, A. E. Jones, and S. A. Wootton, “Eicosapentaenoic and docosapentaenoic acids are the principal products of α-linolenic acid metabolism in young men,” British Journal of Nutrition, vol. 88, no. 4, pp. 355–363, 2002.
[109]  J. T. Brenna, N. Salem, A. J. Sinclair, and S. C. Cunnane, “α-Linolenic acid supplementation and conversion to n-3 long-chain polyunsaturated fatty acids in humans,” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 80, no. 2-3, pp. 85–91, 2009.
[110]  T. Solakivi, O. Jaakkola, A. Kalela et al., “Lipoprotein docosapentaenoic acid is associated with serum matrix metalloproteinase-9 concentration,” Lipids in Health and Disease, vol. 4, no. 8, 2005, http://www.lipidworld.com/content/4/1/8.
[111]  R. N. Lemaitre, T. Tanaka, W. Tang, A. Manichaikul, M. Foy, et al., “Genetic loci associated with plasma phospholipid n-3 fatty acids: a meta-analysis of genome-wide association studies from the CHARGE consortium,” PLOS Genetics, vol. 7, no. 7, Article ID e1002193, 2011.
[112]  B. J. Meyer, A. E. Lane, and N. J. Mann, “Comparison of seal oil to tuna oil on plasma lipid levels and blood pressure in hypertriglyceridaemic subjects,” Lipids, vol. 44, no. 9, pp. 827–835, 2009.
[113]  Y. Wang, D. Botolin, B. Christian, J. Busik, J. Xu, and D. B. Jump, “Tissue-specific, nutritional, and developmental regulation of rat fatty acid elongases,” Journal of Lipid Research, vol. 46, no. 4, pp. 706–715, 2005.
[114]  G. Kaur, D. P. Begg, D. Barr, M. Garg, D. Cameron-Smith, and A. J. Sinclair, “Short-term docosapentaenoic acid (22:5n-3) supplementation increases tissue docosapentaenoic acid, DHA and EPA concentrations in rats,” British Journal of Nutrition, vol. 103, no. 1, pp. 32–37, 2010.
[115]  B. J. Holub, P. Swidinsky, and E. Park, “Oral docosapentaenoic acid (22:5n-3) is differentially incorporated into phospholipid pools and differentially metabolized to eicosapentaenoic acid in tissues from young rats,” Lipids, vol. 46, no. 5, pp. 399–407, 2011.
[116]  R. A. Henderson, R. G. Jensen, C. J. Lammi-Keefe, A. M. Ferris, and K. R. Dardick, “Effect of fish oil on the fatty acid composition of human milk and maternal and infant erythrocytes,” Lipids, vol. 27, no. 11, pp. 863–869, 1992.
[117]  E. Kishida, M. Tajiri, and Y. Masuzawa, “Docosahexaenoic acid enrichment can reduce L929 cell necrosis induced by tumor necrosis factor,” Biochimica et Biophysica Acta, vol. 1761, no. 4, pp. 454–462, 2006.
[118]  M. M. Careaga and H. Sprecher, “Synthesis of two hydroxy fatty acids from 7,10,13,16,19-docosapentaenoic acid by human platelets,” The Journal of Biological Chemistry, vol. 259, no. 23, pp. 14413–14417, 1984.
[119]  C. Bénistant, F. Achard, S. Ben Slama, and M. Lagarde, “Docosapentaenoic acid (22:5, n-3): metabolism and effect on prostacyclin production in endothelial cells,” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 55, no. 4, pp. 287–292, 1996.
[120]  L. Kelly, B. Grehan, A. D. Chiesa et al., “The polyunsaturated fatty acids, EPA and DPA exert a protective effect in the hippocampus of the aged rat,” Neurobiology of Aging, vol. 32, no. 12, pp. 2318.e1–2318.e15, 2011.
[121]  M. Tsuji, S. I. Murota, and I. Morita, “Docosapentaenoic acid (22:5, n-3) suppressed tube-forming activity in endothelial cells induced by vascular endothelial growth factor,” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 68, no. 5, pp. 337–342, 2003.
[122]  S. Gupta, M. Srivastava, N. Ahmad, D. G. Bostwick, and H. Mukhtar, “Over-expression of cyclooxygenase- 2 in human prostate adenocarcinoma,” Prostate, vol. 42, pp. 73–78, 2000.
[123]  X. H. Liu, A. Kirschenbaum, S. Yao, R. Lee, J. F. Holland, and A. C. Levine, “Inhibition of cyclooxygenase-2 suppresses angiogenesis and the growth of prostate cancer in vivo,” Journal of Urology, vol. 164, no. 3, pp. 820–825, 2000.
[124]  N. K. Narayanan, B. A. Narayanan, and B. S. Reddy, “A combination of docosahexaenoic acid and celecoxib prevents prostate cancer cell growth in vitro and is associated with modulation of nuclear factor-kappaB, and steroid hormone receptors,” International Journal of Oncology, vol. 26, no. 3, pp. 785–792, 2005.
[125]  C. D. Allred, D. R. Talbert, R. C. Southard, X. Wang, and M. W. Kilgore, “PPARγ1 as a molecular target of eicosapentaenoic acid in human colon cancer (HT-29) cells,” Journal of Nutrition, vol. 138, no. 2, pp. 250–256, 2008.
[126]  Q. N. Diep, R. M. Touyz, and E. L. Schiffrin, “Docosahexaenoic acid, a peroxisome proliferator-activated receptor-α ligand, induces apoptosis in vascular smooth muscle cells by stimulation of p38: mitogen-activated protein kinase,” Hypertension, vol. 36, no. 5, pp. 851–855, 2000.
[127]  J. Hering, S. Garrean, T. R. Dekoj et al., “Inhibition of proliferation by omega-3 fatty acids in chemoresistant pancreatic cancer cells,” Annals of Surgical Oncology, vol. 14, no. 12, pp. 3620–3628, 2007.
[128]  I. M. Berquin, Y. Min, R. Wu et al., “Modulation of prostate cancer genetic risk by omega-3 and omega-6 fatty acids,” The Journal of Clinical Investigation, vol. 117, no. 7, pp. 1866–1875, 2007.
[129]  A. Federico, F. Morgillo, C. Tuccillo, F. Ciardiello, and C. Loguercio, “Chronic inflammation and oxidative stress in human carcinogenesis,” International Journal of Cancer, vol. 121, no. 11, pp. 2381–2386, 2007.
[130]  Y. Liu, “Fatty acid oxidation is a dominant bioenergetic pathway in prostate cancer,” Prostate Cancer and Prostatic Diseases, vol. 9, no. 3, pp. 230–234, 2006.
[131]  A. Brouwer, M. P. Longnecker, L. S. Birnbaum et al., “Characterization of potential endocrine-related health effects at low-dose levels of exposure to PCBs,” Environmental Health Perspectives, vol. 107, supplement 4, pp. 639–649, 1999.
[132]  J. M. Ritchie, S. L. Vial, L. J. Fuortes et al., “Comparison of proposed frameworks for grouping polychlorinated biphenyl congener data applied to a case-control pilot study of prostate cancer,” Environmental Research, vol. 98, no. 1, pp. 104–113, 2005.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133