High mobility group box 1 (HMGB1) was originally discovered as a chromatin-binding protein several decades ago. It is now increasingly evident that HMGB1 plays a major role in several disease conditions such as atherosclerosis, diabetes, arthritis, sepsis, and cancer. It is intriguing how deregulation of HMGB1 can result in a myriad of disease conditions. Interestingly, HMGB1 is involved in cell proliferation, angiogenesis, and metastasis during cancer progression. Furthermore, HMGB1 has been demonstrated to exert intracellular and extracellular functions, activating key oncogenic signaling pathways. This paper focuses on the role of HMGB1 in prostate cancer development and highlights the potential of HMGB1 to serve as a key target for prostate cancer treatment. 1. Introduction Current treatment methods for prostate cancer (PCa) such as radical prostatectomy, chemotherapy, radiation therapy, or hormonal therapy are used to effectively manage this disease. However, majority of patients undergoing androgen deprivation therapy develop castration resistant PCa [1]. Hence, there is a great interest in understanding the molecular events that are critical for the development of this disease. If characterized, the genes that play a crucial role in PCa progression or hormone resistance PCa will result in development of novel strategies for treating PCa. Recent evidences strongly suggest that high mobility group box 1 (HMGB1) plays a pivotal role in the development of several cancer types including PCa [2–4]. It is found to be associated with all the hallmarks of cancer development such as cell proliferation, anchorage-independent growth, angiogenesis, migration, and invasion [3]. HMGB1 is a DNA binding protein involved in DNA replication and DNA repair process [5]. Outside the cell, it functions as a proinflammatory cytokine [6]. The extracellular receptors of HMGB1 include RAGE and TLR4, with RAGE being implicated as a major receptor for HMGB1 in tumor development. Deregulation of HMGB1 has been shown to be associated with several inflammation associated diseases such as atherosclerosis [7, 8], arthritis [9], and sepsis [10]. Moreover, HMGB1 is also shown to promote tumorigenesis by inducing inflammation [11, 12]. Inflammation is one of the key risk factors implicated in prostate carcinogenesis [13–15]. Based on the recent published evidences, we highlight and speculate on the role of HMGB1 in PCa development and the potential strategies to target HMGB1 for PCa treatment. 2. HMGB1 Expression in Prostate Cancer Cells: Preclinical and Clinical Samples HMGB1 is
References
[1]
R. T. Divrik, L. Turkeri, A. F. Sahin et al., “Prediction of response to androgen deprivation therapy and castration resistance in primary metastatic prostate cancer,” Urologia Internationalis, vol. 88, pp. 25–33, 2012.
[2]
J. E. Ellerman, C. K. Brown, M. De Vera et al., “Masquerader: high mobility group box-1 and cancer,” Clinical Cancer Researchearch, vol. 13, no. 10, pp. 2836–2848, 2007.
[3]
D. Tang, R. Kang, H. J. Zeh, and M. T. Lotze, “High-mobility group box 1 and cancer,” Biochimica et Biophysica Acta, vol. 1799, no. 1-2, pp. 131–140, 2010.
[4]
M. Gnanasekar, S. Thirugnanam, and K. Ramaswamy, “Short hairpin RNA (shRNA) constructs targeting high mobility group box-1 (HMGB1) expression leads to inhibition of prostate cancer cell survival and apoptosis,” International Journal of Oncology, vol. 34, no. 2, pp. 425–431, 2009.
[5]
M. ?tros, “HMGB proteins: interactions with DNA and chromatin,” Biochimica et Biophysica Acta, vol. 1799, no. 1-2, pp. 101–113, 2010.
[6]
C. J. Czura, H. Wang, and K. J. Tracey, “Dual roles for HMGB1: DNA binding and cytokine,” Journal of Endotoxin Research, vol. 7, no. 4, pp. 315–321, 2001.
[7]
H. Naglova and M. Bucova, “HMGB1 and its physiological and pathological roles,” lBratislavské Lekárske Listy, vol. 113, pp. 163–171, 2012.
[8]
S. Park, S. J. Yoon, H. J. Tae, and C. Y. Shim, “RAGE and cardiovascular disease,” Frontiers in Bioscience, vol. 16, no. 2, pp. 486–497, 2011.
[9]
H. Maillard-Lefebvre, E. Boulanger, M. Daroux, C. Gaxatte, B. I. Hudson, and M. Lambert, “Soluble receptor for advanced glycation end products: a new biomarker in diagnosis and prognosis of chronic inflammatory diseases,” Rheumatology, vol. 48, no. 10, pp. 1190–1196, 2009.
[10]
U. Andersson and K. J. Tracey, “HMGB1 in sepsis,” Scandinavian Journal of Infectious Diseases, vol. 35, no. 9, pp. 577–584, 2003.
[11]
A. Sharma, R. Ray, and M. R. Rajeswari, “Overexpression of high mobility group (HMG) B1 and B2 proteins directly correlates with the progression of squamous cell carcinoma in skin,” Cancer Investigation, vol. 26, no. 8, pp. 843–851, 2008.
[12]
H. J. Huttunen and H. Rauvala, “Amphoterin as an extracellular regulator of cell motility: from discovery to disease,” Journal of Internal Medicine, vol. 255, no. 3, pp. 351–366, 2004.
[13]
A. M. De Marzo, V. L. Marchi, J. I. Epstein, and W. G. Nelson, “Proliferative inflammatory atrophy of the prostate: implications for prostatic carcinogenesis,” American Journal of Pathology, vol. 155, no. 6, pp. 1985–1992, 1999.
[14]
A. M. De Marzo, Y. Nakai, and W. G. Nelson, “Inflammation, atrophy, and prostate carcinogenesis,” Urologic Oncology, vol. 25, no. 5, pp. 398–400, 2007.
[15]
A. M. De Marzo, E. A. Platz, S. Sutcliffe et al., “Inflammation in prostate carcinogenesis,” Nature Reviews Cancer, vol. 7, no. 4, pp. 256–269, 2007.
[16]
X. Yao, G. Zhao, H. Yang, X. Hong, L. Bie, and G. Liu, “Overexpression of high-mobility group box 1 correlates with tumor progression and poor prognosis in human colorectal carcinoma,” Journal of Cancer Researchearch and Clinical Oncology, vol. 136, no. 5, pp. 677–684, 2010.
[17]
W. Yan, Y. Chang, X. Liang et al., “High-mobility group box 1 activates caspase-1 and promotes hepatocellular carcinoma invasiveness and metastases,” Hepatology, vol. 55, pp. 1863–1875, 2012.
[18]
H. Gong, P. Zuliani, A. Komuravelli, J. R. Faeder, and E. M. Clarke, “Analysis and verification of the HMGB1 signaling pathway,” BMC Bioinformatics, vol. 11, supplement 7, p. S10, 2010.
[19]
H. Ishiguro, N. Nakaigawa, Y. Miyoshi, K. Fujinami, Y. Kubota, and H. Uemura, “Receptor for advanced glycation end products (RAGE) and its ligand, amphoterin are overexpressed and associated with prostate cancer development,” Prostate, vol. 64, no. 1, pp. 92–100, 2005.
[20]
T. Li, Y. Gui, T. Yuan et al., “Overexpression of high mobility group box 1 with poor prognosis in patients after radical prostatectomy,” British Journal of Urology International, vol. 110, pp. E1125–E1130, 2012.
[21]
H. Kuniyasu, Y. Chihara, H. Kondo, H. Ohmori, and R. Ukai, “Amphoterin induction in prostatic stromal cells by androgen deprivation is associated with metastatic prostate cancer,” Oncology reports, vol. 10, no. 6, pp. 1863–1868, 2003.
[22]
Y. He, J. Zha, Y. Wang, W. Liu, X. Yang, and P. Yu, “Tissue damage-associated “danger signals” influence T-cell responses that promote the progression of preneoplasia to cancer,” Cancer Researchearch, vol. 73, pp. 629–639, 2013.
[23]
H. W. Chung, J. B. Lim, S. Jang, K. J. Lee, K. H. Park, and S. Y. Song, “Serum high mobility group box-1 is a powerful diagnostic and prognostic biomarker for pancreatic ductal adenocarcinoma,” Cancer Science, vol. 103, pp. 1714–1721, 2012.
[24]
H. Lee, M. Song, N. Shin et al., “Diagnostic significance of serum HMGB1 in colorectal carcinomas,” PLoS One, vol. 7, Article ID e34318, 2012.
[25]
S. Jube, Z. S. Rivera, M. E. Bianchi et al., “Cancer cell secretion of the DAMP protein HMGB1 supports progression in malignant mesothelioma,” Cancer Research, vol. 72, pp. 3290–3301, 2012.
[26]
A. Meyer, N. Eberle, J. Bullerdiek, I. Nolte, and D. Simon, “High-mobility group B1 proteins in canine lymphoma: prognostic value of initial and sequential serum levels in treatment outcome following combination chemotherapy,” Veterinary and Comparative Oncology, vol. 8, no. 2, pp. 127–137, 2010.
[27]
G. H. Shang, C. Q. Jia, H. Tian et al., “Serum high mobility group box protein 1 as a clinical marker for non-small cell lung cancer,” Respiratory Medicine, vol. 103, no. 12, pp. 1949–1953, 2009.
[28]
W. Naumnik, W. Nilklińska, M. Ossolińska, and E. Chyczewska, “Serum levels of HMGB1, survivin, and VEGF in patients with advanced non-small cell lung cancer during chemotherapy,” Folia Histochemica et Cytobiologica, vol. 47, no. 4, pp. 703–709, 2009.
[29]
H. Chung, S. G. Lee, H. Kim et al., “Serum high mobility group box-1 (HMGB1) is closely associated with the clinical and pathologic features of gastric cancer,” Journal of Translational Medicine, vol. 7, article 38, 2009.
[30]
B. Q. Cheng, C. Q. Jia, C. T. Liu et al., “Serum high mobility group box chromosomal protein 1 is associated with clinicopathologic features in patients with hepatocellular carcinoma,” Digestive and Liver Disease, vol. 40, no. 6, pp. 446–452, 2008.
[31]
C. Mengus, C. Le Magnen, E. Trella et al., “Elevated levels of circulating IL-7 and IL-15 in patients with early stage prostate cancer,” Journal of Translational Medicine, vol. 9, p. 162, 2011.
[32]
V. S. Melvin, S. C. Roemer, M. E. A. Churchill, and D. P. Edwards, “The C-terminal extension (CTE) of the nuclear hormone receptor DNA binding domain determines interactions and functional response to the HMGB-1/-2 co-regulatory proteins,” Journal of Biological Chemistry, vol. 277, no. 28, pp. 25115–25124, 2002.
[33]
G. Verrijdt, A. Haelens, E. Schoenmakers, W. Rombauts, and F. Claessens, “Comparative analysis of the influence of the high-mobility group box 1 protein on DNA binding and transcriptional activation by the androgen, glucocorticoid, progesterone and mineralocorticoid receptors,” Biochemical Journal, vol. 361, no. 1, pp. 97–103, 2002.
[34]
Y. Wang, J. I. Kreisberg, and P. M. Ghosh, “Cross-talk between the androgen receptor and the phosphatidylinositol 3-kinase/Akt pathway in prostate cancer,” Current Cancer Drug Targets, vol. 7, no. 6, pp. 591–604, 2007.
[35]
T. L. Cha, L. Qiu, C. T. Chen, Y. Wen, and M. C. Hung, “Emodin down-regulates androgen receptor and inhibits prostate cancer cell growth,” Cancer Researchearch, vol. 65, no. 6, pp. 2287–2295, 2005.
[36]
G. Jain, M. V. Cronauer, M. Schrader, P. Moller, and R. B. Marienfeld, “NF-kappaB signaling in prostate cancer: a promising therapeutic target?” World Journal of Urology, vol. 30, pp. 303–310, 2012.
[37]
V. Reebye, A. Frilling, N. A. Habib, and P. J. Mintz, “Intracellular adaptor molecules and AR signalling in the tumour microenvironment,” Cellular Signalling, vol. 23, no. 6, pp. 1017–1021, 2011.
[38]
H. I. Scher and C. L. Sawyers, “Biology of progressive, castration-resistant prostate cancer: directed therapies targeting the androgen-receptor signaling axis,” Journal of Clinical Oncology, vol. 23, no. 32, pp. 8253–8261, 2005.
[39]
I. Elangovan, S. Thirugnanam, A. Chen et al., “Targeting receptor for advanced glycation end products (RAGE) expression induces apoptosis and inhibits prostate tumor growth,” Biochemical and Biophysical Research Communications, vol. 417, pp. 1133–1138, 2012.
[40]
J. Todorova and E. Pasheva, “High mobility group B1 protein interacts with its receptor RAGE in tumor cells but not in normal tissues,” Oncology Letters, vol. 3, pp. 214–218, 2012.
[41]
M. Shiota, H. Izumi, N. Miyamoto et al., “Ets regulates peroxiredoxin1 and 5 expressions through their interaction with the high-mobility group protein B1,” Cancer Scienceence, vol. 99, no. 10, pp. 1950–1959, 2008.
[42]
D. Bianchini, A. Zivi, S. Sandhu, and J. S. de Bono, “Horizon scanning for novel therapeutics for the treatment of prostate cancer,” Annals of Oncology, vol. 21, supplement 7, pp. vii43–vii55, 2010.
[43]
J. C. Hahne, A. F. Okuducu, A. Sahin, V. Fafeur, S. Kiriakidis, and N. Wernert, “The transcription factor ETS-1: its role in tumour development and strategies for its inhibition,” Mini-Reviews in Medicinal Chemistry, vol. 8, no. 11, pp. 1095–1105, 2008.
[44]
D. P. Turner, O. Moussa, M. Sauane, P. B. Fisher, and D. K. Watson, “Prostate-derived ETS factor is a mediator of metastatic potential through the inhibition of migration and invasion in breast cancer,” Cancer Researchearch, vol. 67, no. 4, pp. 1618–1625, 2007.
[45]
V. J. Findlay, D. P. Turner, J. S. Yordy et al., “Prostate-derived ETS factor regulates epithelial-to-mesenchymal transition through both SLUG-dependent and independent mechanisms,” Genes and Cancer, vol. 2, no. 2, pp. 120–129, 2011.
[46]
M. A. Carducci and A. Jimeno, “Targeting bone metastasis in prostate cancer with endothelin receptor antagonists,” Clinical Cancer Researchearch, vol. 12, no. 20, pp. 6296s–6300s, 2006.
[47]
Y. Dai, B. Wong, Y. M. Yen, M. A. Oettinger, J. Kwon, and R. C. Johnson, “Determinants of HMGB proteins required to promote RAG1/2-recombination signal sequence complex assembly and catalysis during V(D)J recombination,” Molecular and Cellular Biology, vol. 25, no. 11, pp. 4413–4425, 2005.
[48]
M. Numata and K. Nagata, “Synergistic requirement of orphan nonamer-like elements and DNA bending enhanced by HMGB1 for RAG-mediated nicking at cryptic 12-RSS but not authentic 12-RSS,” Genes to Cells, vol. 16, no. 8, pp. 879–895, 2011.
[49]
C. S. Grasso, Y. M. Wu, D. R. Robinson et al., “The mutational landscape of lethal castration-resistant prostate cancer,” Nature, vol. 487, pp. 239–243, 2012.
[50]
C. Mettlin, “Recent developments in the epidemiology of prostate cancer,” European Journal of Cancer A, vol. 33, no. 3, pp. 340–347, 1997.
[51]
N. K. Narayanan, D. Nargi, L. Horton, B. S. Reddy, M. C. Bosland, and B. A. Narayanan, “Inflammatory processes of prostate tissue microenvironment drive rat prostate carcinogenesis: preventive effects of celecoxib,” Prostate, vol. 69, no. 2, pp. 133–141, 2009.
[52]
S. Vasto, G. Carruba, G. Candore, E. Italiano, D. Di Bona, and C. Caruso, “Inflammation and prostate cancer,” Future Oncology, vol. 4, no. 5, pp. 637–645, 2008.
[53]
L. M. Sugar, “Inflammation and prostate cancer,” Canadian Journal of Urology, vol. 13, supplement 1, pp. 46–47, 2006.
[54]
A. K. Chaturvedi, S. C. Moore, and A. Hildesheim, “Invited commentary: circulating inflammation markers and cancer risk—implications for epidemiologic studies,” American Journal of Epidemiology, vol. 177, pp. 14–19, 2013.
[55]
C. Gebhardt, A. Riehl, M. Durchdewald et al., “RAGE signaling sustains inflammation and promotes tumor development,” Journal of Experimental Medicine, vol. 205, no. 2, pp. 275–285, 2008.
[56]
A. Taguchi, D. C. Blood, G. Del Toro et al., “Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases,” Nature, vol. 405, no. 6784, pp. 354–360, 2000.
[57]
M. S. Lucia and K. C. Torkko, “Inflammation as a target for prostate cancer chemoprevention: pathological and laboratory rationale,” Journal of Urology, vol. 171, no. 2, pp. S30–S34, 2004.
[58]
S. Dubey, P. Vanveldhuizen, J. Holzbeierlein, O. Tawfik, J. B. Thrasher, and D. Karan, “Inflammation-associated regulation of the macrophage inhibitory cytokine (MIC-1) gene in prostate cancer,” Oncology Letters, vol. 3, pp. 1166–1170, 2012.
[59]
N. J. Clegg, S. S. Couto, J. Wongvipat et al., “MYC cooperates with AKT in prostate tumorigenesis and alters sensitivity to mTOR inhibitors,” PLoS ONE, vol. 6, no. 3, Article ID e17449, 2011.
[60]
C. P. Wong, T. M. Bray, and E. Ho, “Induction of proinflammatory response in prostate cancer epithelial cells by activated macrophages,” Cancer Letters, vol. 276, no. 1, pp. 38–46, 2009.
[61]
A. V. Shetty, S. Thirugnanam, G. Dakshinamoorthy et al., “18alpha-glycyrrhetinic acid targets prostate cancer cells by down-regulating inflammation-related genes,” International Journal of Oncology, vol. 39, pp. 635–640, 2011.
[62]
L. Liu, M. Yang, R. Kang et al., “HMGB1-induced autophagy promotes chemotherapy resistance in leukemia cells,” Leukemia, vol. 25, no. 1, pp. 23–31, 2011.
[63]
J. Huang, K. Liu, Y. Yu et al., “Targeting HMGB1-mediated autophagy as a novel therapeutic strategy for osteosarcoma,” Autophagy, vol. 8, pp. 275–277, 2012.
[64]
Y. Zhang, Y. Cheng, X. Ren et al., “NAC1 modulates sensitivity of ovarian cancer cells to cisplatin by altering the HMGB1-mediated autophagic response,” Oncogene, vol. 31, pp. 1055–1064, 2011.
[65]
R. Kang and D. Tang, “Autophagy in pancreatic cancer pathogenesis and treatment,” American Journal of Cancer Research, vol. 2, pp. 383–396, 2012.
[66]
P. I. Makinen and S. Yla-Herttuala, “Therapeutic gene targeting approaches for the treatment of dyslipidemias and atherosclerosis,” Current Opinion in Lipidology, vol. 24, no. 2, pp. 116–122, 2013.
[67]
R. Huschka, A. Barhoumi, Q. Liu, J. A. Roth, L. Ji, and N. J. Halas, “Gene silencing by gold nanoshell-mediated delivery and laser-triggered release of antisense oligonucleotide and siRNA,” ACS Nano, vol. 6, pp. 7681–7691, 2012.
[68]
C. Di Cresce and J. Koropatnick, “Antisense treatment in human prostate cancer and melanoma,” Current Cancer Drug Targets, vol. 10, no. 6, pp. 555–565, 2010.
[69]
H. Miyake, I. Hara, and M. E. Gleave, “Antisense oligodeoxynucleotide therapy targeting clusterin gene for prostate cancer: vancouver experience from discovery to clinic,” International Journal of Urology, vol. 12, no. 9, pp. 785–794, 2005.
[70]
N. Ke, D. Zhou, J. E. Chatterton et al., “A new inducible RNAi xenograft model for assessing the staged tumor response to mTOR silencing,” Experimental Cell Research, vol. 312, no. 15, pp. 2726–2734, 2006.
[71]
P. Kaur, G. M. Nagaraja, and A. Asea, “Combined lentiviral and RNAi technologies for the delivery and permanent silencing of the hsp25 gene,” Methods in Molecular Biology, vol. 787, pp. 121–136, 2011.
[72]
K. Bisanz, J. Yu, M. Edlund et al., “Targeting ECM-integrin interaction with liposome-encapsulated small interfering RNAs inhibits the growth of human prostate cancer in a bone xenograft imaging model,” Molecular Therapy, vol. 12, no. 4, pp. 634–643, 2005.
[73]
D. X. Song, A. M. Chen, F. J. Guo et al., “Differential proteomic analysis and function study of human prostate carcinoma cells with different osseous metastatic tendency,” National Medical Journal of China, vol. 88, no. 17, pp. 1197–1201, 2008.
[74]
D. J. Kerr, “Targeting angiogenesis in cancer: clinical development of bevacizumab,” Nature Clinical Practice Oncology, vol. 1, no. 1, pp. 39–43, 2004.
[75]
J. R. van Beijnum, P. Nowak-Sliwinska, E. van den Boezem, P. Hautvast, W. A. Buurman, and A. W. Griffioen, “Tumor angiogenesis is enforced by autocrine regulation of high-mobility group box 1,” Oncogene, vol. 32, pp. 363–374, 2013.
[76]
H. Ohmori, Y. Luo, K. Fujii et al., “Dietary linoleic acid and glucose enhances azoxymethane-induced colon cancer and metastases via the expression of high-mobility group box 1,” Pathobiology, vol. 77, no. 4, pp. 210–217, 2010.
[77]
Y. Luo, Y. Chihara, K. Fujimoto et al., “High mobility group box 1 released from necrotic cells enhances regrowth and metastasis of cancer cells that have survived chemotherapy,” European Journal of Cancer, vol. 49, pp. 741–751, 2013.
[78]
R. Smolarczyk, T. Cichon, S. Matuszczak et al., “The role of Glycyrrhizin, an inhibitor of HMGB1 protein, in anticancer therapy,” Archivum Immunologiae et Therapiae Experimentalis, vol. 60, pp. 391–399, 2012.
[79]
M. Ohnishi, H. Katsuki, C. Fukutomi et al., “HMGB1 inhibitor glycyrrhizin attenuates intracerebral hemorrhage-induced injury in rats,” Neuropharmacology, vol. 61, pp. 975–980, 2011.
[80]
L. Cavone, M. Muzzi, R. Mencucci et al., “18β-Glycyrrhetic acid inhibits immune activation triggered by HMGB1, a pro-inflammatory protein found in the tear fluid during conjunctivitis and blepharitis,” Ocular Immunology and Inflammation, vol. 19, no. 3, pp. 180–185, 2011.
[81]
H. Yamaguchi, Y. Kidachi, K. Kamiie, T. Noshita, and H. Umetsu, “Structural insight into the ligand-receptor interaction between glycyrrhetinic acid (GA) and the high-mobility group protein B1 (HMGB1)-DNA complex,” Bioinformation, vol. 8, pp. 1147–1153, 2012.
[82]
B. Cai, E. A. Deitch, and L. Ulloa, “Novel insights for systemic inflammation in sepsis and hemorrhage,” Mediators of Inflammation, vol. 2010, Article ID 642462, 10 pages, 2010.
[83]
X. Liang, A. R. D. V. Chavez, N. E. Schapiro et al., “Ethyl pyruvate administration inhibits hepatic tumor growth,” Journal of Leukocyte Biology, vol. 86, no. 3, pp. 599–607, 2009.
[84]
T. Saiwichai, V. Sangalangkarn, K. I. Kawahara et al., “Green tea extract supplement inhibition of HMGB1 release in rats exposed to cigarette smoke,” Southeast Asian Journal of Tropical Medicine and Public Health, vol. 41, no. 1, pp. 250–258, 2010.
[85]
F. Li, Z. Chen, Q. Pan et al., “The protective effect of PNU-282987, a selective alpha7 nicotinic acetylcholine receptor agonist, on the hepatic ischemia-reperfusion injury is associated with the inhibition of high-mobility group box 1 protein expression and nuclear factor kappaB activation in mice,” Shock, vol. 39, pp. 197–203, 2013.
[86]
W. R. Parrish, M. Rosas-Ballina, M. Gallowitsch-Puerta et al., “Modulation of TNF release by choline requires α7 subunit nicotinic acetylcholine receptor-mediated signaling,” Molecular Medicine, vol. 14, no. 9-10, pp. 567–574, 2008.
[87]
C. H. Lai, G. Y. Shi, F. T. Lee et al., “Recombinant human thrombomodulin suppresses experimental abdominal aortic aneurysms induced by calcium chloride in mice,” Annals of Surgery. In press.
[88]
S. Hagiwara, H. Iwasaka, K. Goto et al., “Recombinant thrombomodulin prevents heatstroke by inhibition of high-mobility group box 1 protein in sera of rats,” Shock, vol. 34, no. 4, pp. 402–406, 2010.
[89]
T. Iba, K. Aihara, S. Watanabe et al., “Recombinat thrombomodulin improves the visceral microcirculation by attenuating the leukocyte-endothelial interaction in a rat LPS model,” Thrombosis Research, 2012.
[90]
L. F. Li, C. T. Yang, C. C. Huang, Y. Y. Liu, K. C. Kao, and H. C. Lin, “Low-molecular-weight heparin reduces hyperoxia-augmented ventilator-induced lung injury via serine/threonine kinase-protein kinase B,” Respiratory Research, vol. 12, p. 90, 2011.
[91]
H. Yang, M. Ochani, J. Li et al., “Reversing established sepsis with antagonists of endogenous high-mobility group box 1,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 1, pp. 296–301, 2004.
[92]
H. Xu, Y. Yao, Z. Su et al., “Endogenous HMGB1 contributes to ischemia-reperfusion-induced myocardial apoptosis by potentiating the effect of TNF-α/JNK,” American Journal of Physiology, vol. 300, no. 3, pp. H913–H921, 2011.
[93]
C. L. Zhang, M. G. Shu, H. W. Qi, and L. W. Li, “Inhibition of tumor angiogenesis by HMGB1 A box peptide,” Medical Hypotheses, vol. 70, no. 2, pp. 343–345, 2008.
[94]
H. A. Kim, J. H. Park, S. H. Cho, and M. Lee, “Lung epithelial binding peptide-linked high mobility group box-1 A box for lung epithelial cell-specific delivery of DNA,” Journal of Drug Targeting, vol. 19, no. 7, pp. 589–596, 2011.
[95]
S. H. Jee, K. Kim, and M. Lee, “A high mobility group B-1 box A peptide combined with an artery wall binding peptide targets delivery of nucleic acids to smooth muscle cells,” Journal of Cellular Biochemistry, vol. 107, no. 1, pp. 163–170, 2009.
[96]
J. A. Nogueira-Machado, C. M. D. O. Volpe, C. A. Veloso, and M. M. Chaves, “HMGB1, TLR and RAGE: a functional tripod that leads to diabetic inflammation,” Expert Opinion on Therapeutic Targets, vol. 15, no. 8, pp. 1023–1035, 2011.
[97]
K. A. Moy, L. Jiao, N. D. Freedman et al., “Soluble receptor for advanced glycation end products and risk of liver cancer,” Hepatology, 2013.
[98]
L. Jiao, L. Chen, A. Alsarraj, D. Ramsey, Z. Duan, and H. B. El-Serag, “Plasma soluble receptor for advanced glycation end-products and risk of colorectal adenoma,” International Journal of Molecular Epidemiology and Genetics, vol. 3, pp. 294–304, 2012.
[99]
L. Jiao, S. J. Weinstein, D. Albanes et al., “Evidence that serum levels of the soluble receptor for advanced glycation end products are inversely associated with pancreatic cancer risk: a prospective study,” Cancer Research, vol. 71, no. 10, pp. 3582–3589, 2011.
[100]
T. Krechler, M. Jáchymová, O. Mestek, A. ?ák, T. Zima, and M. Kalousová, “Soluble receptor for advanced glycation end-products (sRAGE) and polymorphisms of RAGE and glyoxalase I genes in patients with pancreas cancer,” Clinical Biochemistry, vol. 43, no. 10-11, pp. 882–886, 2010.
[101]
R. Jing, M. Cui, J. Wang, and H. Wang, “Receptor for advanced glycation end products (RAGE) soluble form (sRAGE): a new biomarker for lung cancer,” Neoplasma, vol. 57, no. 1, pp. 55–61, 2010.
[102]
P. Tesa?ová, M. Kalousová, M. Jáchymová, O. Mestek, L. Petruzelka, and T. Zima, “Receptor for advanced glycation end products (RAGE)—soluble form (sRAGE) and gene polymorphisms in patients with breast cancer,” Cancer Investigation, vol. 25, no. 8, pp. 720–725, 2007.
[103]
A. Faham, D. Bennett, and J. G. Altin, “Liposomal Ag engrafted with peptides of sequence derived from HMGB1 induce potent Ag-specific and anti-tumour immunity,” Vaccine, vol. 27, no. 42, pp. 5846–5854, 2009.
[104]
R. Saenz, C. D. S. Souza, C. T. Huang, M. Larsson, S. Esener, and D. Messmer, “HMGB1-derived peptide acts as adjuvant inducing immune responses to peptide and protein antigen,” Vaccine, vol. 28, no. 47, pp. 7556–7562, 2010.
[105]
G. Sonpavde, N. Agarwal, T. K. Choueiri, and P. W. Kantoff, “Recent advances in immunotherapy for the treatment of prostate cancer,” Expert Opinion on Biological Therapy, vol. 11, no. 8, pp. 997–1009, 2011.
[106]
R. S. DiPaola, M. Plante, H. Kaufman et al., “A phase I trial of pox PSA vaccines (PROSTVAC-VF) with B7-1, ICAM-1, and LFA-3 co-stimulatory molecules (TRICOM?) in patients with prostate cancer,” Journal of Translational Medicine, vol. 4, article 1, 2006.
[107]
R. Madan and J. Gulley, “The current and emerging role of immunotherapy in prostate cancer,” Clinical Genitourinary Cancer, vol. 8, no. 1, pp. 10–16, 2010.