Majority of patients with metastatic castrate resistant prostate cancer (mCRPC) develop bone metastases which results in significant morbidity and mortality as a result of skeletal-related events (SREs). Several bone-targeted agents are either in clinical use or in development for prevention of SREs. Bisphosphonates were the first class of drugs investigated for prevention of SREs and zoledronic acid is the only bisphosphonate that is FDA-approved for this indication. Another bone-targeted agent is denosumab which is a fully humanized monoclonal antibody that binds to the RANK-L thereby inhibiting RANK-L mediated bone resorption. While several radiopharmaceuticals were approved for pain palliation in mCRPC including strontium and samarium, alpharadin is the first radiopharmaceutical to show significant overall survival benefit. Contemporary therapeutic options including enzalutamide and abiraterone have effects on pain palliation and SREs as well. Other novel bone-targeted agents are currently in development, including the receptor tyrosine kinase inhibitors cabozantinib and dasatinib. Emerging therapeutics in mCRPC has resulted in great strides in preventing one of the most significant sources of complications of bone metastases. 1. Introduction Prostate cancer remains the most common noncutaneous cancer among American men [1]. More than 90% of patients with metastatic castrate resistant prostate cancer (mCRPC) develop bone metastases which results in a significant increase in the risk of morbidity and mortality [2, 3]. The extent of bone involvement in mCRPC has been also found to be associated with patient survival [4]. While most patients are clinically asymptomatic, those with symptoms may manifest with either pain or as skeletal-related events (SREs). SREs are defined variably but typically include manifestations of spinal cord compression, pathological fractures, hypercalcemia of malignancy, requirement for interventions such as bone surgery, or need for bone radiation. Historically, in the absence of bone-targeted therapy, the rate of SREs at 15 months was reported to be 44%, including a 22% rate of fracture [5, 6]. While the mechanisms and lesions in mCRPC have traditionally been thought of as osteoblastic, increasing evidence lends credence to the importance of osteolytic and proosteoclastogenic factors in prostate cancer metastases, which brings about evidence of both an osteolytic and an osteoblastic component with increased bone formation and resorption [7]. Docetaxel, the standard first-line chemotherapy agent in mCRPC, not only improves
References
[1]
R. Siegel, D. Naishadham, and A. Jemal, “Cancer statistics, 2012,” CA: Cancer Journal for Clinicians, vol. 62, no. 1, pp. 10–29, 2012.
[2]
L. Bubendorf, A. Sch?pfer, U. Wagner et al., “Metastatic patterns of prostate cancer: an autopsy study of 1,589 patients,” Human Pathology, vol. 31, no. 5, pp. 578–583, 2000.
[3]
L. Costa, X. Badia, E. Chow, A. Lipton, and A. Wardley, “Impact of skeletal complications on patients' quality of life, mobility, and functional independence,” Supportive Care in Cancer, vol. 16, no. 8, pp. 879–889, 2008.
[4]
P. Sabbatini, S. M. Larson, A. Kremer et al., “Prognostic significance of extent of disease in bone in patients with androgen-independent prostate cancer,” Journal of Clinical Oncology, vol. 17, no. 3, pp. 948–957, 1999.
[5]
F. Saad, D. M. Gleason, R. Murray et al., “A randomized, placebo-controlled trial of zoledronic acid in patients with hormone-refractory metastatic prostate carcinoma,” Journal of the National Cancer Institute, vol. 94, no. 19, pp. 1458–1468, 2002.
[6]
F. Saad, D. M. Gleason, R. Murray et al., “Long-term efficacy of zoledronic acid for the prevention of skeletal complications in patients with metastatic hormone-refractory prostate cancer,” Journal of the National Cancer Institute, vol. 96, no. 11, pp. 879–882, 2004.
[7]
E. T. Keller and J. Brown, “Prostate cancer bone metastases promote both osteolytic and osteoblastic activity,” Journal of Cellular Biochemistry, vol. 91, no. 4, pp. 718–729, 2004.
[8]
I. F. Tannock, R. De Wit, W. R. Berry et al., “Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer,” The New England Journal of Medicine, vol. 351, no. 15, pp. 1502–1512, 2004.
[9]
D. P. Petrylak, C. M. Tangen, M. H. A. Hussain et al., “Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer,” The New England Journal of Medicine, vol. 351, no. 15, pp. 1513–1520, 2004.
[10]
K. Fizazi, H. I. Scher, A. Molina, et al., “Abiraterone acetate for treatment of metastatic castration-resistant prostate cancer: final overall survival analysis of the COU-AA-301 randomised, double-blind, placebo-controlled phase 3 study,” The Lancet Oncology, vol. 13, no. 10, pp. 983–992, 2012.
[11]
H. I. Scher, K. Fizazi, F. Saad, et al., “Increased survival with enzalutamide in prostate cancer after chemotherapy,” The New England Journal of Medicine, vol. 367, no. 13, pp. 1187–1197, 2012.
[12]
C. J. Logothetis, E. Basch, A. Molina, et al., “Effect of abiraterone acetate and prednisone compared with placebo and prednisone on pain control and skeletal-related events in patients with metastatic castration-resistant prostate cancer: exploratory analysis of data from the COU-AA-301 randomised trial,” The Lancet Oncology, vol. 13, no. 12, pp. 1210–1217, 2012.
[13]
E. Basch, C. J. Ryan, T. Kheoh, et al., “The impact of Abiraterone Acetate (AA) Therapy on patient-reported pain and functional status in chemotherapy-naive patients with progressive, metastatic castration-resistant prostate cancer (mCRPC),” Annals of Oncology, vol. 23, supplement 9, 2012, abstract 8950.
[14]
K. Fizazi, H. I. Scher, F. Saad, et al., “Impact of Enzalutamide, an androgen receptor signaling inhibitor, on time to first skeletal related event (SRE) and pain in the phase 3 AFFIRM Study,” Annals of Oncology, vol. 23, supplement 9, 2012, abstract 8960.
[15]
J. S. De Bono, C. J. Logothetis, A. Molina et al., “Abiraterone and increased survival in metastatic prostate cancer,” The New England Journal of Medicine, vol. 364, no. 21, pp. 1995–2005, 2011.
[16]
K. Fizazi, M. Carducci, M. Smith et al., “Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomised, double-blind study,” The Lancet, vol. 377, no. 9768, pp. 813–822, 2011.
[17]
V. J. Lewington, A. J. McEwan, D. M. Ackery et al., “A prospective, randomised double-blind crossover study to examine the efficacy of strontium-89 in pain palliation in patients with advanced prostate cancer metastatic to bone,” European Journal of Cancer, vol. 27, no. 8, pp. 954–958, 1991.
[18]
A. N. Serafini, S. J. Houston, I. Resche et al., “Palliation of pain associated with metastatic bone cancer using samarium-153 lexidronam: a double-blind placebo-controlled clinical trial,” Journal of Clinical Oncology, vol. 16, no. 4, pp. 1574–1581, 1998.
[19]
O. Sartor, R. H. Reid, P. J. Hoskin et al., “Samarium-153-lexidronam complex for treatment of painful bone metastases in hormone-refractory prostate cancer,” Urology, vol. 63, no. 5, pp. 940–945, 2004.
[20]
O. Sartor, R. H. Reid, D. L. Bushnell, D. P. Quick, and P. J. Ell, “Safety and efficacy of repeat administration of samarium Sm-153 lexidronam to patients with metastatic bone pain,” Cancer, vol. 109, no. 3, pp. 637–643, 2007.
[21]
C. Parker, S. Nilsson, D. Heinrich, et al., “Updated analysis of the phase III, double-blind, randomized, multinational study of radium-223 chloride in castration-resistant prostate cancer (CRPC) patients with bone metastases (ALSYMPCA),” Journal of Clinical Oncology, vol. 30, no. 18, 2012, abstract LBA4512.
[22]
G. M. Oades, J. Coxon, and K. W. Colston, “The potential role of bisphosphonates in prostate cancer,” Prostate Cancer and Prostatic Diseases, vol. 5, no. 4, pp. 264–272, 2002.
[23]
M. J. Rogers, D. J. Watts, and R. G. G. Russell, “Overview of bisphosphonates,” Cancer, vol. 80, no. 8, pp. 1652–1660, 1997.
[24]
E. J. Small, M. R. Smith, J. J. Seaman, S. Petrone, and M. O. Kowalski, “Combined analysis of two multicenter, randomized, placebo-controlled studies of pamidronate disodium for the palliation of bone pain in men with metastatic prostate cancer,” Journal of Clinical Oncology, vol. 21, no. 23, pp. 4277–4284, 2003.
[25]
D. S. Ernst, I. F. Tannock, E. W. Winquist et al., “Randomized, double-blind, controlled trial of mitoxantrone/prednisone and clodronate versus mitoxantrone/prednisone and placebo in patients with hormone-refractory prostate cancer and pain,” Journal of Clinical Oncology, vol. 21, no. 17, pp. 3335–3342, 2003.
[26]
D. P. Dearnaley, M. R. Sydes, M. D. Mason et al., “A double-blind, placebo-controlled, randomized trial of oral sodium clodronate for metastatic prostate cancer (MRC PR05 Trial),” Journal of the National Cancer Institute, vol. 95, no. 17, pp. 1300–1311, 2003.
[27]
D. P. Dearnaley, M. D. Mason, M. K. Parmar, K. Sanders, and M. R. Sydes, “Adjuvant therapy with oral sodium clodronate in locally advanced and metastatic prostate cancer: long-term overall survival results from the MRC PR04 and PR05 randomised controlled trials,” The The Lancet Oncologyogy, vol. 10, no. 9, pp. 872–876, 2009.
[28]
J. B. Aragon-Ching, “Further analysis of the survival benefit of clodronate,” Cancer Biology and Therapy, vol. 8, no. 23, pp. 2221–2222, 2009.
[29]
F. Saad, J. E. Brown, C. Van Poznak et al., “Incidence, risk factors, and outcomes of osteonecrosis of the jaw: integrated analysis from three blinded active-controlled phase III trials in cancer patients with bone metastases,” Annals of Oncology, vol. 23, no. 5, pp. 1341–1347, 2012.
[30]
J. B. Aragon-Ching, Y.-M. Ning, C. C. Chen et al., “Higher incidence of Osteonecrosis of the Jaw (ONJ) in patients with metastatic castration resistant prostate cancer treated with anti-angiogenic agents,” Cancer Investigation, vol. 27, no. 2, pp. 221–226, 2009.
[31]
S. Ruggiero, J. Gralow, R. E. Marx, et al., “Practical guidelines for the prevention, diagnosis, and treatment of osteonecrosis of the jaw in patients with cancer,” Journal of Oncology Practice, vol. 2, no. 1, pp. 7–14, 2006.
[32]
P. Conte and V. Guarneri, “Safety of intravenous and oral bisphosphonates and compliance with dosing regimens,” Oncologist, vol. 9, no. 4, pp. 28–37, 2004.
[33]
G. B. Kasting and M. D. Francis, “Retention of etidronate in human, dog, and rat,” Journal of Bone and Mineral Research, vol. 7, no. 5, pp. 513–522, 1992.
[34]
K. Matsuzaki, N. Udagawa, N. Takahashi et al., “Osteoclast differentiation factor (ODF) induces osteoclast-like cell formation in human peripheral blood mononuclear cell cultures,” Biochemical and Biophysical Research Communications, vol. 246, no. 1, pp. 199–204, 1998.
[35]
H. Yasuda, N. Shima, N. Nakagawa et al., “Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 7, pp. 3597–3602, 1998.
[36]
T. L. Burgess, Y.-X. Qian, S. Kaufman et al., “The ligand for osteoprotegerin (OPGL) directly activates mature osteoclasts,” Journal of Cell Biology, vol. 145, no. 3, pp. 527–538, 1999.
[37]
E. A. O'Brien, J. H. H. Williams, and M. J. Marshall, “Osteoprotegerin ligand regulates osteoclast adherence to the bone surface in mouse calvaria,” Biochemical and Biophysical Research Communications, vol. 274, no. 2, pp. 281–290, 2000.
[38]
D. L. Lacey, H. L. Tan, J. Lu et al., “Osteoprotegerin ligand modulates murine osteoclast survival in vitro and in vivo,” American Journal of Pathology, vol. 157, no. 2, pp. 435–448, 2000.
[39]
T. Wada, T. Nakashima, N. Hiroshi, and J. M. Penninger, “RANKL-RANK signaling in osteoclastogenesis and bone disease,” Trends in Molecular Medicine, vol. 12, no. 1, pp. 17–25, 2006.
[40]
J.-J. Body, T. Facon, R. E. Coleman et al., “A study of the biological receptor activator of nuclear factor-κ ligand inhibitor, denosumab, in patients with multiple myeloma or bone metastases from breast cancer,” Clinical Cancer Research, vol. 12, no. 4, pp. 1221–1228, 2006.
[41]
K. Fizazi, A. Lipton, X. Mariette et al., “Randomized phase II trial of denosumab in patients with bone metastases from prostate cancer, breast cancer, or other neoplasms after intravenous bisphosphonates,” Journal of Clinical Oncology, vol. 27, no. 10, pp. 1564–1571, 2009.
[42]
S. Rajpar, C. Massard, A. Laplanche et al., “Urinary N-telopeptide (uNTx) is an independent prognostic factor for overall survival in patients with bone metastases from castration-resistant prostate cancer,” Annals of Oncology, vol. 21, no. 9, pp. 1864–1869, 2010.
[43]
M. R. Smith, B. Egerdie, N. H. Toriz et al., “Denosumab in men receiving androgen-deprivation therapy for prostate cancer,” The New England Journal of Medicine, vol. 361, no. 8, pp. 745–755, 2009.
[44]
M. R. Smith, F. Saad, R. Coleman et al., “Denosumab and bone-metastasis-free survival in men with castration-resistant prostate cancer: results of a phase 3, randomised, placebo-controlled trial,” The Lancet, vol. 379, no. 9810, pp. 39–46, 2012.
[45]
J. Goyal and E. S. Antonarakis, “Bone-targeting radiopharmaceuticals for the treatment of prostate cancer with bone metastases,” Cancer Letters, 2012.
[46]
A. Adam, A. K. Dixon, D. J. Allison, and R. G. Grainger, Grainger and Allison's Diagnostic Radiology: A Textbook of Medical Imaging, Churchill Livingstone, Edinburgh, UK, 5th edition, 2008.
[47]
K. Buchali, H.-J. Correns, M. Schuerer, D. Schnorr, H. Lips, and K. Sydow, “Results of a double blind study of 89-strontium therapy of skeletal metastases of prostatic carcinoma,” European Journal of Nuclear Medicine, vol. 14, no. 7-8, pp. 349–351, 1988.
[48]
A. T. Porter, A. J. B. McEwan, J. E. Powe et al., “Results of a randomized Phase-III trial to evaluate the efficacy of strontium-89 adjuvant to local field external beam irradiation in the management of endocrine resistant metastatic prostate cancer,” International Journal of Radiation Oncology Biology Physics, vol. 25, no. 5, pp. 805–813, 1993.
[49]
P. M. Quilty, “A comparison of the palliative effects of strontium-89 and external beam radiotherapy in metastatic prostate cancer,” Radiotherapy and Oncology, vol. 31, no. 1, pp. 33–40, 1994.
[50]
G. O. N. Oosterhof, J. T. Roberts, T. M. De Reijke et al., “Strontium(89) chloride versus palliative local field radiotherapy in patients with hormonal escaped prostate cancer: a phase III study of the European Organisation for Research and Treatment of Cancer, Genitourinary Group,” European Urology, vol. 44, no. 5, pp. 519–526, 2003.
[51]
M. Roque, M. J. Martinez, P. Alonso, E. Catala, J. L. Garcia, and M. Ferrandiz, “Radioisotopes for metastatic bone pain,” Cochrane Database of Systematic Reviews, no. 4, Article ID CD003347, 2003.
[52]
A. H. Laing, D. M. Ackery, R. J. Bayly et al., “Strontium-89 chloride for pain palliation in prostatic skeletal malignancy,” British Journal of Radiology, vol. 64, no. 765, pp. 817–822, 1991.
[53]
I. G. Finlay, M. D. Mason, and M. Shelley, “Radioisotopes for the palliation of metastatic bone cancer: a systematic review,” The Lancet Oncologyogy, vol. 6, no. 6, pp. 392–400, 2005.
[54]
E. B. Silberstein and C. Williams, “Strontium-89 therapy for the pain of osseous metastases,” Journal of Nuclear Medicine, vol. 26, no. 4, pp. 345–348, 1985.
[55]
F. Pons, R. Herranz, A. Garcia et al., “Strontium-89 for palliation of pain from bone metastases in patients with prostate and breast cancer,” European Journal of Nuclear Medicine, vol. 24, no. 10, pp. 1210–1214, 1997.
[56]
J. H. Turner, P. G. Claringbold, E. L. Hetherington, P. Sorby, and A. A. Martindale, “A phase I study of samarium-153 ethylenediaminetetramethylene phosphonate therapy for disseminated skeletal metastases,” Journal of Clinical Oncology, vol. 7, no. 12, pp. 1926–1931, 1989.
[57]
I. Resche, J.-F. Chatal, A. Pecking et al., “A dose-controlled study of 153Sm-ethylenediaminetetramethylenephosphonate (EDTMP) in the treatment of patients with painful bone metastases,” European Journal of Cancer, vol. 33, no. 10, pp. 1583–1591, 1997.
[58]
P. J. Cheetham and D. P. Petrylak, “Alpha particles as radiopharmaceuticals in the treatment of bone metastases: mechanism of action of radium-223 chloride (Alpharadin) and radiation,” Oncology, vol. 26, no. 4, pp. 330–337, 341, 2012.
[59]
S. Nilsson, L. Franzén, C. Parker et al., “Bone-targeted radium-223 in symptomatic, hormone-refractory prostate cancer: a randomised, multicentre, placebo-controlled phase II study,” The Lancet Oncologyogy, vol. 8, no. 7, pp. 587–594, 2007.
[60]
S. Nilsson, R. H. Larsen, S. D. Foss? et al., “First clinical experience with α-emitting radium-223 in the treatment of skeletal metastases,” Clinical Cancer Research, vol. 11, no. 12, pp. 4451–4459, 2005.
[61]
M. J. Morris, N. Pandit-Taskar, J. Carrasquillo et al., “Phase I study of samarium-153 lexidronam with docetaxel in castration-resistant metastatic prostate cancer,” Journal of Clinical Oncology, vol. 27, no. 15, pp. 2436–2442, 2009.
[62]
S.-M. Tu, P. Mathew, F. C. Wong, D. Jones, M. M. Johnson, and C. J. Logothetis, “Phase I study of concurrent weekly docetaxel and repeated samarium-153 lexidronam in patients with castration-resistant metastatic prostate cancer,” Journal of Clinical Oncology, vol. 27, no. 20, pp. 3319–3324, 2009.
[63]
M. J. Morris, H. J. Hammers, C. Sweeney, et al., “Safety of radium-223 dichloride (Ra-223) with docetaxel (D) in patients with bone metastases from castration-resistant prostate cancer (CRPC): a phase I Prostate Cancer Clinical Trials Consortium Study,” Journal of Clinical Oncology, vol. 31, 2013, abstract 5021.
[64]
K. Fizazi, P. Beuzeboc, J. Lumbroso et al., “Phase II trial of consolidation docetaxel and samarium-153 in patients with bone metastases from castration-resistant prostate cancer,” Journal of Clinical Oncology, vol. 27, no. 15, pp. 2429–2435, 2009.
[65]
S.-M. Tu, R. E. Millikan, B. Mengistu et al., “Bone-targeted therapy for advanced androgen-independent carcinoma of the prostate: a randomised phase II trial,” The Lancet, vol. 357, no. 9253, pp. 336–341, 2001.
[66]
N. D. James, S. Pirrie, D. Barton, et al., “Clinical outcomes in patients with castrate-refractory prostate cancer (CRPC) metastatic to bone randomized in the factorial TRAPEZE trial to docetaxel (D) with strontium-89 (Sr89), zoledronic acid (ZA), neither, or both (ISRCTN 12808747),” Journal of Clinical Oncology, vol. 31, 2013, abstract LBA5000.
[67]
D. C. Smith, M. R. Smith, C. Sweeney, et al., “Cabozantinib in patients with advanced prostate cancer: results of a phase II randomized discontinuation trial,” Journal of Clinical Oncology, vol. 31, no. 4, pp. 412–419, 2013.
[68]
R. J. Lee, P. J. Saylor, M. D. Michaelson, et al., “A dose-ranging study of cabozantinib in men with castration-resistant prostate cancer and bone metastases,” Clinical Cancer Research, vol. 19, no. 11, pp. 3088–3094, 2013.
[69]
F. Saad and A. Lipton, “SRC kinase inhibition: targeting bone metastases and tumor growth in prostate and breast cancer,” Cancer Treatment Reviews, vol. 36, no. 2, pp. 177–184, 2010.
[70]
J. C. Araujo, P. Mathew, A. J. Armstrong et al., “Dasatinib combined with docetaxel for castration-resistant prostate cancer: results from a phase 1-2 study,” Cancer, vol. 118, no. 1, pp. 63–71, 2012.
[71]
E. Y. Yu, G. Wilding, E. Posadas et al., “Phase II study of dasatinib in patients with metastatic castration-resistant prostate cancer,” Clinical Cancer Research, vol. 15, no. 23, pp. 7421–7428, 2009.
[72]
J. C. Araujo, G. C. Trudel, F. Saad, et al., “Overall survival (OS) and safety of dasatinib/docetaxel versus docetaxel in patients with metastatic castration-resistant prostate cancer (mCRPC): results from the randomized phase III READY trial,” Journal of Clinical Oncology, vol. 6, 2013, abstract LBA8.
[73]
E. Y. Yu, F. Duan, M. Muzi, et al., “Correlation of 18F-fluoride PET response to dasatinib in castration-resistant prostate cancer bone metastases with progression-free survival: preliminary results from ACRIN 6687,” Journal of Clinical Oncology, vol. 31, 2013, abstract 5003.
[74]
J. S. De Bono, S. Oudard, M. Ozguroglu et al., “Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: a randomised open-label trial,” The Lancet, vol. 376, no. 9747, pp. 1147–1154, 2010.
[75]
C. J. Ryan, A. Molina, and T. Griffin, “Abiraterone in metastatic prostate cancer,” The New England Journal of Medicine, vol. 368, no. 15, pp. 1458–1459, 2013.