全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Galectins as New Prognostic Markers and Potential Therapeutic Targets for Advanced Prostate Cancers

DOI: 10.1155/2013/519436

Full-Text   Cite this paper   Add to My Lib

Abstract:

A better understanding of multimolecular interactions involved in tumor dissemination is required to identify new effective therapies for advanced prostate cancer (PCa). Several groups investigated protein-glycan interactions as critical factors for crosstalk between prostate tumors and their microenvironment. This review both discusses whether the “galectin-signature” might serve as a reliable biomarker for the identification of patients with high risk of metastasis and assesses the galectin-glycan lattices as potential novel targets for anticancer therapies. The ultimate goal of this review is to convey how basic findings related to galectins could be in turn translated into clinical settings for patients with advanced PCa. 1. Introduction Prostate cancer (PCa) is the second most common cancer in men and represents a significant cause of mortality worldwide [1]. About 15%–20% of men with PCa will certainly develop metastatic disease and die. Early diagnosis and rapid treatment play a critical role in the final outcome of the disease. At present, surgical and radiation treatments are efficient against clinically localized PCa, whereas androgen ablation is mainly recommended for advanced PCa [2]. However, metastatic cancer is essentially fatal due to disease evolution towards a castration-resistant PCa (CRPC). Novel alternative approaches are therefore essential to prevent tumor dissemination and progression to this incurable stage. Effective cancer therapies for PCa typically capitalize on molecular differences between healthy and neoplastic tissues that can be targeted with drugs [3]. In the past years, delineating gene and protein expression profiles has been critical in dissecting the molecular underpinnings of cellular function; the arising information has been exploited for the design of rational therapeutic strategies. In the postgenomic era, the study of the “glycome” has enabled the association of specific glycan structures with the transition from normal to neoplastic tissue [4]. Glycans abundantly decorate the surface of all mammalian cells and the extracellular matrix with which they interact [5]. In general, mammalian glycans are the product of a repertoire of glycosyltransferases and glycosidases acting sequentially and dictating the glycosylation signature of each cell type [6]. It has been recognized that the structure of cell surface glycans can change under different physiological and pathological conditions. In fact, malignant transformation is associated with abnormal glycosylation resulting in the synthesis of altered glycan

References

[1]  A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, and D. Forman, “Global cancer statistics,” CA Cancer Journal for Clinicians, vol. 61, no. 2, pp. 69–90, 2011.
[2]  S. R. Denmeade and J. T. Isaacs, “A history of prostate cancer treatment,” Nature Reviews Cancer, vol. 2, no. 5, pp. 389–396, 2002.
[3]  N. Taniguchi, K. Nakamura, H. Narimatsu, C.-W. Von Der Lieth, and J. Paulson, “Human disease glycomics/proteome initiative workshop and the 4th HUPO annual congress,” Proteomics, vol. 6, no. 1, pp. 12–13, 2006.
[4]  N. H. Packer, C.-W. Von Der Lieth, K. F. Aoki-Kinoshita et al., “Frontiers in glycomics: bioinformatics and biomarkers in disease: an NIH white paper prepared from discussions by the focus groups at a workshop on the NIH campus, bethesda MD (September 11-13, 2006),” Proteomics, vol. 8, no. 1, pp. 8–20, 2008.
[5]  J. B. Lowe, “Glycosylation, immunity, and autoimmunity,” Cell, vol. 104, no. 6, pp. 809–812, 2001.
[6]  M. A. Daniels, K. A. Hogquist, and S. C. Jameson, “Sweet ‘n’ sour: the impact of differential glycosylation on T cell responses,” Nature Immunology, vol. 3, no. 10, pp. 903–910, 2002.
[7]  D. H. Dube and C. R. Bertozzi, “Glycans in cancer and inflammation—potential for therapeutics and diagnostics,” Nature Reviews Drug Discovery, vol. 4, no. 6, pp. 477–488, 2005.
[8]  C. D. Rillahan and J. C. Paulson, “Glycan microarrays for decoding the glycome,” Annual Review of Biochemistry, vol. 80, pp. 797–823, 2011.
[9]  F.-T. Liu and G. A. Rabinovich, “Galectins as modulators of tumour progression,” Nature Reviews Cancer, vol. 5, no. 1, pp. 29–41, 2005.
[10]  G. A. Rabinovich and D. O. Croci, “Regulatory circuits mediated by lectin-glycan interactions in autoimmunity and cancer,” Immunity, vol. 36, no. 3, pp. 322–335, 2012.
[11]  O. B. Garner and L. G. Baum, “Galectin-glycan lattices regulate cell-surface glycoprotein organization and signalling,” Biochemical Society Transactions, vol. 36, no. 6, pp. 1472–1477, 2008.
[12]  D. Compagno, F. Jaworski, L. Gentilini et al., Galectins: Major Signaling Modulators Inside and Outside the Cell, 2013.
[13]  F. Yu, R. L. Finley Jr., A. Raz, and H.-R. C. Kim, “Galectin-3 translocates to the perinuclear membranes and inhibits cytochrome c release from the mitochondria. A role for synexin in galectin-3 translocation,” The Journal of Biological Chemistry, vol. 277, no. 18, pp. 15819–15827, 2002.
[14]  A. Paz, R. Haklai, G. Elad-Sfadia, E. Ballan, and Y. Kloog, “Galectin-1 binds oncogenic H-ras to mediate ras membrane anchorage and cell transformation,” Oncogene, vol. 20, no. 51, pp. 7486–7493, 2001.
[15]  I. Camby, M. Le Mercier, F. Lefranc, and R. Kiss, “Galectin-1: a small protein with major functions,” Glycobiology, vol. 16, no. 11, 2006.
[16]  M. T. Elola, C. Wolfenstein-Todel, M. F. Troncoso, G. R. Vasta, and G. A. Rabinovich, “Galectins: matricellular glycan-binding proteins linking cell adhesion, migration, and survival,” Cellular and Molecular Life Sciences, vol. 64, no. 13, pp. 1679–1700, 2007.
[17]  G. A. Rabinovich and M. A. Toscano, “Turning 'sweet' on immunity: galectin-glycan interactions in immune tolerance and inflammation,” Nature Reviews Immunology, vol. 9, no. 5, pp. 338–352, 2009.
[18]  R. Y. Yang, G. A. Rabinovich, and F. T. Liu, “Galectins: structure, function and therapeutic potential,” Expert Reviews in Molecular Medicine, vol. 10, p. e17, 2008.
[19]  D. N. W. Cooper, “Galectinomics: finding themes in complexity,” Biochimica et Biophysica Acta, vol. 1572, no. 2-3, pp. 209–231, 2002.
[20]  G. A. Rabinovich, M. A. Toscano, S. S. Jackson, and G. R. Vasta, “Functions of cell surface galectin-glycoprotein lattices,” Current Opinion in Structural Biology, vol. 17, no. 5, pp. 513–520, 2007.
[21]  J. Ellerhorst, “Induction of differentiation and apoptosis in the prostate cancer cell line LNCaP by sodium butyrate and galectin-1,” International Journal of Oncology, vol. 14, no. 2, pp. 225–232, 1999.
[22]  H. F. Valenzuela, K. E. Pace, P. V. Cabrera et al., “O-glycosylation regulates LNCaP prostate cancer cell susceptibility to apoptosis induced by galectin-1,” Cancer Research, vol. 67, no. 13, pp. 6155–6162, 2007.
[23]  D. J. Laderach, L. Gentilini, L. Giribaldi et al., “A unique galectin signature in human prostate cancer progression suggests galectin-1 as a key target for treatment of advanced disease,” Cancer Research, vol. 73, pp. 86–96, 2013.
[24]  N. Clausse, F. Van Den Br?le, D. Waltregny, F. Garnier, and V. Castronovo, “Galectin-1 expression in prostate tumor-associated capillary endothelial cells is increased by prostate carcinoma cells and modulates heterotypic cell-cell adhesion,” Angiogenesis, vol. 3, no. 4, pp. 317–325, 1999.
[25]  J. Ellerhorst, “Differential expression of endogenous galectin-1 and gaIectin-3 in human prostate cancer cell lines and effects of overexpressing galectin-1 on cell phenotype,” International Journal of Oncology, vol. 14, no. 2, pp. 217–224, 1999.
[26]  H. Andersen, O. N. Jensen, E. P. Moiseeva, and E. Eriksen, “A proteome study of secreted prostatic factors affecting osteoblastic activity: galectin-1 is involved in differentiation of human bone marrow stromal cells,” Journal of Bone and Mineral Research, vol. 18, no. 2, pp. 195–203, 2003.
[27]  J. He and L. G. Baum, “Endothelial cell expression of galectin-1 induced by prostate cancer cells inhibits T-cell transendothelial migration,” Laboratory Investigation, vol. 86, no. 6, pp. 578–590, 2006.
[28]  T. Fukumori, N. Oka, Y. Takenaka et al., “Galectin-3 regulates mitochondrial stability and antiapoptotic function in response to anticancer drug in prostate cancer,” Cancer Research, vol. 66, no. 6, pp. 3114–3119, 2006.
[29]  Y. Wang, P. Nangia-Makker, L. Tait et al., “Regulation of prostate cancer progression by galectin-3,” American Journal of Pathology, vol. 174, no. 4, pp. 1515–1523, 2009.
[30]  S. Califice, V. Castronovo, M. Bracke, and F. Van Den Brǔle, “Dual activities of galectin-3 in human prostate cancer: tumor suppression of nuclear galectin-3 vs tumor promotion of cytoplasmic galectin-3,” Oncogene, vol. 23, no. 45, pp. 7527–7536, 2004.
[31]  Y. Wang, P. Nangia-Makker, V. Balan, V. Hogan, and A. Raz, “Calpain activation through galectin-3 inhibition sensitizes prostate cancer cells to cisplatin treatment,” Cell Death and Disease, vol. 1, no. 11, article e101, 2010.
[32]  T. Fukumori, H.-O. Kanayama, and A. Raz, “The role of galectin-3 in cancer drug resistance,” Drug Resistance Updates, vol. 10, no. 3, pp. 101–108, 2007.
[33]  P. Guha, E. Kaptan, G. Bandyopadhyaya et al., “Cod glycopeptide with picomolar affinity to galectin-3 suppresses T-cell apoptosis and prostate cancer metastasis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 13, pp. 5052–5057, 2013.
[34]  V. V. Glinsky, G. V. Glinsky, K. Rittenhouse-Olson et al., “The role of thomsen-friedenreich antigen in adhesion of human breast and prostate cancer cells to the endothelium,” Cancer Research, vol. 61, no. 12, pp. 4851–4857, 2001.
[35]  O. V. Glinskii, V. H. Huxley, G. V. Glinsky, K. J. Pienta, A. Raz, and V. V. Glinsky, “Mechanical entrapment is insufficient and intercellular adhesion is essential for metastatic cell arrest in distant organs,” Neoplasia, vol. 7, no. 5, pp. 522–527, 2005.
[36]  J. E. Lehr and K. J. Pienta, “Preferential adhesion of prostate cancer cells to a human bone marrow endothelial cell line,” Journal of the National Cancer Institute, vol. 90, no. 2, pp. 118–123, 1998.
[37]  K. A. Spivey, I. Chung, J. Banyard, I. Adini, H. A. Feldman, and B. R. Zetter, “A role for collagen XXIII in cancer cell adhesion, anchorage-independence and metastasis,” Oncogene, vol. 31, no. 18, pp. 2362–2372, 2012.
[38]  K. J. Pienta, H. Naik, A. Akhtar et al., “Inhibition of spontaneous metastasis in a rat prostate cancer model by oral administration of modified citrus pectin,” Journal of the National Cancer Institute, vol. 87, no. 5, pp. 348–353, 1995.
[39]  O. V. Glinskii, S. Sud, V. V. Mossine et al., “Inhibition of prostate cancer bone metastasis by synthetic TF antigen mimic/galectin-3 inhibitor lactulose-L-leucine,” Neoplasia, vol. 14, no. 1, pp. 65–73, 2012.
[40]  Y. Yang, Z. Zhou, S. He et al., “Treatment of prostate carcinoma with (Galectin-3)-targeted HPMA copolymer-(G3-C12)-5-Fluorouracil conjugates,” Biomaterials, vol. 33, no. 7, pp. 2260–2271, 2012.
[41]  J. Jiang, I. Eliaz, and D. Sliva, “Synergistic and additive effects of modified citrus pectin with two polybotanical compounds, in the suppression of invasive behavior of human breast and prostate cancer cells,” Integrative Cancer Therapies, vol. 12, no. 2, pp. 145–152, 2013.
[42]  Z.-Z. Su, J. Lin, R. Shen, P. E. Fisher, N. I. Goldstein, and P. B. Fisher, “Surface-epitope masking and expression cloning identifies the human prostate carcinoma tumor antigen gene PCTA-1 a member of the galectin gene family,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 14, pp. 7252–7257, 1996.
[43]  Y. Zick, M. Eisenstein, R. A. Goren, Y. R. Hadari, Y. Levy, and D. Ronen, “Role of galectin-8 as a modulator of cell adhesion and cell growth,” Glycoconjugate Journal, vol. 19, no. 7–9, pp. 517–526, 2002.
[44]  C. Seelenmeyer, C. Stegmayer, and W. Nickel, “Unconventional secretion of fibroblast growth factor 2 and galectin-1 does not require shedding of plasma membrane-derived vesicles,” FEBS Letters, vol. 582, no. 9, pp. 1362–1368, 2008.
[45]  E. Gorelik, U. Galili, and A. Raz, “On the role of cell surface carbohydrates and their binding proteins (lectins) in tumor metastasis,” Cancer and Metastasis Reviews, vol. 20, no. 3-4, pp. 245–277, 2001.
[46]  N. Mazurek, J. S. Yun, K.-F. Liu et al., “Phosphorylated galectin-3 mediates tumor necrosis factor-related apoptosis-inducing ligand signaling by regulating phosphatase and tensin homologue deleted on chromosome 10 in human breast carcinoma cells,” The Journal of Biological Chemistry, vol. 282, no. 29, pp. 21337–21348, 2007.
[47]  N. Mazurek, Y. J. Sun, J. E. Price et al., “Phosphorylation of galectin-3 contributes to malignant transformation of human epithelial cells via modulation of unique sets of genes,” Cancer Research, vol. 65, no. 23, pp. 10767–10775, 2005.
[48]  P. Nangia-Makker, Y. Wang, T. Raz et al., “Cleavage of galectin-3 by matrix metalloproteases induces angiogenesis in breast cancer,” International Journal of Cancer, vol. 127, no. 11, pp. 2530–2541, 2010.
[49]  V. Balan, P. Nangia-Makker, D. H. Kho, Y. Wang, and A. Raz, “Tyrosine-phosphorylated galectin-3 protein is resistant to prostate-specific antigen (PSA) cleavage,” The Journal of Biological Chemistry, vol. 287, no. 8, pp. 5192–5198, 2012.
[50]  M. Salatino and G. A. Rabinovich, “Fine-tuning antitumor responses through the control of galectin-glycan interactions: an overview,” Methods in Molecular Biology, vol. 677, pp. 355–374, 2011.
[51]  V. Balan, P. Nangia-Makker, and A. Raz, “Galectins as cancer biomarkers,” Cancers, vol. 2, no. 2, pp. 592–610, 2010.
[52]  J. Ellerhorst, P. Troncoso, X.-C. Xu, J. Lee, and R. Lotan, “Galectin-1 and galectin-3 expression in human prostate tissue and prostate cancer,” Urological Research, vol. 27, no. 5, pp. 362–367, 1999.
[53]  F. A. van den Brule, D. Waltregny, and V. Castronovo, “Increased expression of galectin-1 in carcinoma-associated stroma predicts poor outcome in prostate carcinoma patients,” The Journal of Pathology, vol. 193, no. 1, pp. 80–87, 2001.
[54]  F. A. Van Den Br?le, D. Waltregny, F.-T. Liu, and V. Castronovo, “Alteration of the cytoplasmic/nuclear expression pattern of galectin-3 correlates with prostate carcinoma progression,” International Journal of Cancer, vol. 89, no. 4, pp. 361–367, 2000.
[55]  J. S. Knapp, S. D. Lokeshwar, U. Vogel et al., “Galectin-3 expression in prostate cancer and benign prostate tissues: correlation with biochemical recurrence,” World Journal of Urology, vol. 31, no. 2, pp. 351–358, 2013.
[56]  M. H. Vaarala, K. Porvari, A. Kyll?nen, and P. Vihko, “Differentially expressed genes in two LNCaP prostate cancer cell lines reflecting changes during prostate cancer progression,” Laboratory Investigation, vol. 80, no. 8, pp. 1259–1268, 2000.
[57]  L. Ingrassia, I. Camby, F. Lefranc et al., “Anti-galectin compounds as potential anti-cancer drugs,” Current Medicinal Chemistry, vol. 13, no. 29, pp. 3513–3527, 2006.
[58]  D. Compagno, C. Merle, A. Morin et al., “SIRNA-directed in vivo silencing of androgen receptor inhibits the growth of castration-resistant prostate carcinomas,” PLoS ONE, vol. 2, no. 10, Article ID e1006, 2007.
[59]  M. E. Kaighn, K. Shankar Narayan, and Y. Ohnuki, “Establishment and characterization of a human prostatic carcinoma cell line (PC-3),” Investigative Urology, vol. 17, no. 1, pp. 16–23, 1979.
[60]  R. M. Sramkoski, T. G. Pretlow II, J. M. Giaconia et al., “A new human prostate carcinoma cell line, 22Rv1,” In Vitro Cellular and Developmental Biology, vol. 35, no. 7, pp. 403–409, 1999.
[61]  R. V. Gopalkrishnan, T. Roberts, S. Tuli, D.-C. Kang, K. A. Christiansen, and P. B. Fisher, “Molecular characterization of prostate carcinoma tumor antigen-1, PCTA-1, a human galectin-8 related gene,” Oncogene, vol. 19, no. 38, pp. 4405–4416, 2000.
[62]  M. A. Toscano, G. A. Bianco, J. M. Ilarregui et al., “Differential glycosylation of TH1, TH2 and TH-17 effector cells selectively regulates susceptibility to cell death,” Nature Immunology, vol. 8, no. 8, pp. 825–834, 2007.
[63]  Y. Levy, R. Arbel-Goren, Y. R. Hadari et al., “Galectin-8 functions as a matricellular modulator of cell adhesion,” The Journal of Biological Chemistry, vol. 276, no. 33, pp. 31285–31295, 2001.
[64]  R. B. Zavareh, M. A. Sukhai, R. Hurren et al., “Suppression of cancer progression by MGAT1 shRNA knockdown,” PLoS ONE, vol. 7, no. 9, Article ID e43721, 2013.
[65]  M. Le Mercier, S. Fortin, V. Mathieu et al., “Galectin 1 proangiogenic and promigratory effects in the Hs683 oligodendroglioma model are partly mediated through the control of BEX2 expression1,” Neoplasia, vol. 11, no. 5, pp. 485–496, 2009.
[66]  V. L. Thijssen, S. Hulsmans, and A. W. Griffioen, “The galectin profile of the endothelium: altered expression and localization in activated and tumor endothelial cells,” American Journal of Pathology, vol. 172, no. 2, pp. 545–553, 2008.
[67]  V. L. Thijssen, B. Barkan, H. Shoji et al., “Tumor cells secrete galectin-1 to enhance endothelial cell activity,” Cancer Research, vol. 70, no. 15, pp. 6216–6224, 2010.
[68]  D. O. Croci, M. Salatino, N. Rubinstein et al., “Disrupting galectin-1 interactions with N-glycans suppresses hypoxia-driven angiogenesis and tumorigenesis in Kaposi's sarcoma,” The Journal of Experimental Medicine, vol. 209, no. 11, pp. 1985–2000, 2012.
[69]  A. Banh, J. Zhang, H. Cao et al., “Tumor galectin-1 mediates tumor growth and metastasis through regulation of T-cell apoptosis,” Cancer Research, vol. 71, no. 13, pp. 4423–4431, 2011.
[70]  M. Karlou, V. Tzelepi, and E. Efstathiou, “Therapeutic targeting of the prostate cancer microenvironment,” Nature Reviews Urology, vol. 7, no. 9, pp. 494–509, 2010.
[71]  J. Semenas, C. Allegrucci, S. A. Boorjian, N. P. Mongan, and J. L. Persson, “Overcoming drug resistance and treating advanced prostate cancer,” Current Drug Targets, vol. 13, no. 10, pp. 1308–1323, 2012.
[72]  P. W. Kantoff, C. S. Higano, N. D. Shore et al., “Sipuleucel-T immunotherapy for castration-resistant prostate cancer,” The New England Journal of Medicine, vol. 363, no. 5, pp. 411–422, 2010.
[73]  X. Huang, C. H. Chau, and W. D. Figg, “Challenges to improved therapeutics for metastatic castrate resistant prostate cancer: from recent successes and failures,” Journal of Hematology & Oncology, vol. 5, p. 35, 2012.
[74]  N. Hasegawa, K. Mizutani, T. Suzuki, T. Deguchi, and Y. Nozawa, “A comparative study of protein profiling by proteomic analysis in camptothecin-resistant PC3 and camptothecin-sensitive LNCaP human prostate cancer cells,” Urologia Internationalis, vol. 77, no. 4, pp. 347–354, 2006.
[75]  R.-Y. Yang, D. K. Hsu, and F.-T. Liu, “Expression of galectin-3 modulates T-cell growth and apoptosis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 13, pp. 6737–6742, 1996.
[76]  D. Compagno, D. J. Laderach, L. Gentilini, F. M. Jaworski, and G. A. Rabinovich, “Delineating the “galectin signature” of tumor microenvironment,” Oncoimmunology, vol. 2, no. 4, Article ID e23565, 2013.
[77]  P. Nangia-Makker, Y. Honjo, R. Sarvis et al., “Galectin-3 induces endothelial cell morphogenesis and angiogenesis,” American Journal of Pathology, vol. 156, no. 3, pp. 899–909, 2000.
[78]  V. L. J. L. Thijssen, R. Postel, R. J. M. G. E. Brandwijk et al., “Galectin-1 is essential in tumor angiogenesis and is a target for antiangiogenesis therapy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 43, pp. 15975–15980, 2006.
[79]  V. M. C. Delgado, L. G. Nugnes, L. L. Colombo et al., “Modulation of endothelial cell migration and angiogenesis: a novel function for the “tandem-repeat” lectin galectin-8,” FASEB Journal, vol. 25, no. 1, pp. 242–254, 2011.
[80]  S. Akahani, P. Nangia-Makker, H. Inohara, H.-R. C. Kim, and A. Raz, “Galectin-3: a novel antiapoptotic molecule with a functional BH1 (NWGR) domain of Bcl-2 family,” Cancer Research, vol. 57, no. 23, pp. 5272–5276, 1997.
[81]  F. Van den Br?le, S. Califice, F. Garnier, P. L. Fernandez, A. Berchuck, and V. Castronovo, “Galectin-1 accumulation in the ovary carcinoma peritumoral stroma is induced by ovary carcinoma cells and affects both cancer cell proliferation and adhesion to laminin-1 and fibronectin,” Laboratory Investigation, vol. 83, no. 3, pp. 377–386, 2003.
[82]  S. Califice, V. Castronovo, and F. Van Den Br?le, “Galectin-3 and cancer,” International Journal of Oncology, vol. 25, no. 4, pp. 983–992, 2004.
[83]  J. Heimburg, J. Yan, S. Morey et al., “Inhibition of spontaneous breast cancer metastasis by anti-Thomsen-friedenreich antigen monoclonal antibody JAA-F11,” Neoplasia, vol. 8, no. 11, pp. 939–948, 2006.
[84]  A. S. Merseburger, M. W. Kramer, J. Hennenlotter et al., “Involvement of decreased galectin-3 expression in the pathogenesis and progression of prostate cancer,” Prostate, vol. 68, no. 1, pp. 72–77, 2008.
[85]  H. Ahmed, P. P. Banerjee, and G. R. Vasta, “Differential expression of galectins in normal, benign and malignant prostate epithelial cells: silencing of galectin-3 expression in prostate cancer by its promoter methylation,” Biochemical and Biophysical Research Communications, vol. 358, no. 1, pp. 241–246, 2007.
[86]  A. Vyakarnam, A. J. Lenneman, K. M. Lakkides, R. J. Patterson, and J. L. Wang, “A comparative nuclear localization study of galectin-1 with other splicing components,” Experimental Cell Research, vol. 242, no. 2, pp. 419–428, 1998.
[87]  I. Paron, A. Scaloni, A. Pines et al., “Nuclear localization of Galectin-3 in transformed thyroid cells: a role in transcriptional regulation,” Biochemical and Biophysical Research Communications, vol. 302, no. 3, pp. 545–553, 2003.
[88]  A. Vyakarnam, S. F. Dagher, J. L. Wang, and R. J. Patterson, “Evidence for a role for galectin-1 in pre-mRNA splicing,” Molecular and Cellular Biology, vol. 17, no. 8, pp. 4730–4737, 1997.
[89]  S. F. Dagher, J. L. Wang, and R. J. Patterson, “Identification of galectin-3 as a factor in pre-mRNA splicing,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 4, pp. 1213–1217, 1995.
[90]  C. Maier, K. R?sch, K. Herkommer et al., “A candidate gene approach within the susceptibility region PCaP on 1q42.2-43 excludes deleterious mutations of the PCTA-1 gene to be responsible for hereditary prostate cancer,” European Urology, vol. 42, no. 3, pp. 301–307, 2002.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133