全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PPAR Research  2013 

Effects of Three Different Fibrates on Intrahepatic Cholestasis Experimentally Induced in Rats

DOI: 10.1155/2013/781348

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background. Activation of PPARα modulates cholesterol metabolism and suppresses bile acid synthesis. This study aims to evaluate the effect of PPARα agonists, fenofibrate, bezafibrate, and gemfibrozil, on acute cholestasis induced by ethinylestradiol (EE) plus chlorpromazine (CPZ) in rats. Method. 100 male albino rats (150–200?gm) were divided randomly into 10 equal groups. Control group received 1% methylcellulose vehicle; disease group received CPZ plus EE for 5 consecutive days; four groups received either ursodeoxycholic acid, fenofibrate, bezafibrate, or gemfibrozil for 7 days; 2 days before EE + CPZ, three other groups received one of the three fibrates after GW6471, a selective PPARα antagonist in addition to EE + CPZ. The final group received GW6471 alone. Results. The three fibrates showed marked reduction ( ) in serum levels of ALP, GGT, ALT, AST, total bile acids, bilirubin, TNFα, and IL-1β and in hepatic malondialdehyde level as well as a significant increase in bile flow rate ( ) in addition to improvements in histopathological parameters compared to diseased group. In groups which received GW6471, these effects were completely abolished with fenofibrate and partially blocked with bezafibrate and gemfibrozil. Conclusion. Short-term administration of fibrates to EE/CPZ-induced intrahepatic cholestatic rats exerted beneficial effects on hepatocellular damage and apoptosis. Fenofibrate anticholestatic effect was solely PPARα dependent while other mechanisms played part in bezafibrate and gemfibrozil actions. 1. Background Cholestasis is defined as a disturbance of bile secretion that can result from a functional defect in bile formation at the level of hepatocytes or from impaired bile secretion and flow at the bile duct level [1]. It results in intrahepatic accumulation of cytotoxic bile acids, which cause liver damage ultimately leading to biliary fibrosis and cirrhosis and ultimately end-stage liver disease requiring liver transplantation. Cholestatic liver injury is counteracted by a variety of adaptive hepatoprotective mechanisms including alterations in bile acid transport, synthesis, and detoxification [2]. Because the intrinsic adaptive response to bile acids cannot fully prevent liver injury in cholestasis, therapeutic targeting of many nuclear receptors via specific and potent agonists may further enhance the hepatic defense against toxic bile acids. Therefore nuclear receptors (NRs) are promising therapeutic targets for cholestatic liver diseases [3]. Peroxisome proliferator-activated receptor alpha (PPARα), farnesoid X receptor

References

[1]  M. Trauner and J. L. Boyer, “Bile salt transporters: molecular characterization, function, and regulation,” Physiological Reviews, vol. 83, no. 2, pp. 633–671, 2003.
[2]  G. Zollner and M. Trauner, “Nuclear receptors as therapeutic targets in cholestatic liver diseases,” British Journal of Pharmacology, vol. 156, no. 1, pp. 7–27, 2009.
[3]  E. Sturm, M. Wagner, and M. Trauner, “Nuclear receptor ligands in therapy of cholestatic liver disease,” Frontiers in Bioscience, vol. 14, no. 11, pp. 4299–4325, 2009.
[4]  I. P. Torra, T. Claudel, C. Duval, V. Kosykh, J.-C. Fruchart, and B. Staels, “Bile acids induce the expression of the human peroxisome proliferator-activated receptor α gene via activation of the farnesoid X receptor,” Molecular Endocrinology, vol. 17, no. 2, pp. 259–272, 2003.
[5]  F. R. Simon, J. Fortune, M. Iwahashi, C. Gartung, A. Wolkoff, and E. Sutherland, “Ethinyl estradiol cholestasis involves alterations in expression of liver sinusoidal transporters,” The American Journal of Physiology, vol. 271, no. 6, pp. G1043–G1052, 1996.
[6]  P. L. M. Jansen, M. Muumller, and E. Sturm, “Genes and cholestasis,” Hepatology, vol. 34, no. 6, pp. 1067–1074, 2001.
[7]  E. Ros, D. M. Small, and M. C. Carey, “Effects of chlorpromazine hydrochloride on bile salt synthesis, bile formation and biliary lipid secretion in the Rhesus monkey: a model for chlorpromazine-induced cholestasis,” European Journal of Clinical Investigation, vol. 9, no. 1, pp. 29–41, 1979.
[8]  P. Zimetbaum, W. H. Frishman, and S. Kahn, “Effects of gemfibrozil and other fibric acid derivatives on blood lipids and lipoproteins,” Journal of Clinical Pharmacology, vol. 31, no. 1, pp. 25–37, 1991.
[9]  F. J. Gonzalez, J. M. Peters, and R. C. Cattley, “Mechanism of action of the nongenotoxic peroxisome proliferators: role of the peroxisome proliferator-activated receptor,” Journal of the National Cancer Institute, vol. 90, no. 22, pp. 1702–1709, 1998.
[10]  S. M. Post, H. Duez, P. P. Gervois, B. Staels, F. Kuipers, and H. M. G. Princen, “Fibrates suppress bile acid synthesis via peroxisome proliferator-activated receptor-α-mediated downregulation of cholesterol 7α-hydroxylase and sterol 27-hydroxylase expression,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 21, no. 11, pp. 1840–1845, 2001.
[11]  J. Chianale, V. Vollrath, A. M. Wielandt et al., “Fibrates induce mdr2 gene expression and biliary phospholipid secretion in the mouse,” Biochemical Journal, vol. 314, no. 3, pp. 781–786, 1996.
[12]  N. H. James, A. R. Soames, and R. A. Roberts, “Suppression of hepatocyte apoptosis and induction of DNA synthesis by the rat and mouse hepatocarcinogen diethylhexylphlathate (DEHP) and the mouse hepatocarcinogen 1,4-dichlorobenzene (DCB),” Archives of Toxicology, vol. 72, no. 12, pp. 784–790, 1998.
[13]  S. Reitman and S. Frankel, “A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases,” American Journal of Clinical Pathology, vol. 28, no. 1, pp. 56–63, 1957.
[14]  M. I. Walters and H. W. Gerarde, “An ultramicromethod for the determination of conjugated and total bilirubin in serum or plasma,” Microchemical Journal, vol. 15, no. 2, pp. 231–243, 1970.
[15]  T. Yoshioka, K. Kawada, T. Shimada, and M. Mori, “Lipid peroxidation in maternal and cord blood and protective mechanism against activated-oxygen toxicity in the blood,” American Journal of Obstetrics and Gynecology, vol. 135, no. 3, pp. 372–376, 1979.
[16]  S. A. Said and D. S. El-Agamy, “Effects of curcumin, resveratrol and ursodeoxycholic acid on ethinylestradiol and chlorpromazine-induced intrahepatic cholestasis in rats,” Pharmacologyonline, vol. 3, pp. 91–100, 2009.
[17]  M. Vore, “Mechanisms of cholestasis,” in Hepatotoxicology, R. G. Meers, S. D. Harrison, and R. J. Bull, Eds., pp. 525–568, CRC Press, Boca Raton Fla, USA, 1991.
[18]  G. Farrell, “Drug-induced cholestasis,” in Drug-Induced Liver Disease, G. C. Farrell, Ed., pp. 319–370, Churchill Livingstone, Edinburgh, UK, 1994.
[19]  F. Berr, F. R. Simon, and J. Reichen, “Ethynylestradiol impairs bile salt uptake and Na-K pump function of rat hepatocytes,” The American Journal of Physiology, vol. 10, no. 4, pp. G437–G443, 1984.
[20]  E. B. Keeffe, N. M. Blankenship, and B. F. Scharschmidt, “Alteration of rat liver plasma membrane fluidity and ATPase activity by chlorpromazine hydrochloride and its metabolites,” Gastroenterology, vol. 79, no. 2, pp. 222–231, 1980.
[21]  R. Lele and V. Lele, “Functional genomics and the liver,” in Molecular Nuclear Medicine, L. Feinendegen, W. Shreeve, W. Eckelman, Y.-W. Bahk, and H. Wagner Jr., Eds., pp. 527–562, Springer, Berlin, Germany, 2003.
[22]  S. M. Toler, “Oxidative stress plays an important role in the pathogenesis of drug-induced retinopathy,” Experimental Biology and Medicine, vol. 229, no. 7, pp. 607–615, 2004.
[23]  M. A. Hussein and S. M. Abdel-Gawad, “Protective effect of Jasonia montana against ethinylestradiol-induced cholestasis in rats,” Saudi Pharmaceutical Journal, vol. 18, no. 1, pp. 27–33, 2010.
[24]  T. Obata, “Intrahepatic cholestasis and hyperbilirubinemia in ethynyl estradiol and chlorpromazine-treated rats,” Gastroenterologia Japonica, vol. 18, no. 6, pp. 538–548, 1983.
[25]  A. A. Sulaiman, N. N. Al-Shawi, A. H. Jwaied, D. M. Mahmood, and S. A. Hussain, “Protective effect of melatonin against chlorpromazine-induced liver disease in rats,” Saudi Medical Journal, vol. 27, no. 10, pp. 1477–1482, 2006.
[26]  M. Cindoruk, M. Kerem, T. Karakan et al., “Peroxisome proliferators-activated alpha agonist treatment ameliorates hepatic damage in rats with obstructive jaundice: an experimental study,” BMC Gastroenterology, vol. 7, article 44, 2007.
[27]  T. A. El-Azim and A. H. Mahmoud, “Role of pravastatin and fenofibrate in protection against oxidative stress after extrahepatic biliary obstruction in rats,” Bulletin Alexandria Faculty of Medicine, vol. 42, no. 2, pp. 533–534, 2006.
[28]  N. Leuenberger, S. Pradervand, and W. Wahli, “Sumoylated PPARα mediates sex-specific gene repression and protects the liver from estrogen-induced toxicity in mice,” Journal of Clinical Investigation, vol. 119, no. 10, pp. 3138–3148, 2009.
[29]  T. Nishioka, H. Hyogo, Y. Numata et al., “A nuclear receptor-mediated choleretic action of fibrates is associated with enhanced canalicular membrane fluidity and transporter activity mediating bile acid-independent bile secretion,” Journal of Atherosclerosis and Thrombosis, vol. 12, no. 4, pp. 211–217, 2005.
[30]  A. Kobayashi, Y. Suzuki, H. Kuno, S. Sugai, H. Sakakibara, and K. Shimoi, “Effects of fenofibrate on plasma and hepatic transaminase activities and hepatic transaminase gene expression in rats,” Journal of Toxicological Sciences, vol. 34, no. 4, pp. 377–387, 2009.
[31]  T. Toyama, H. Nakamura, Y. Harano et al., “PPARα ligands activate antioxidant enzymes and suppress hepatic fibrosis in rats,” Biochemical and Biophysical Research Communications, vol. 324, no. 2, pp. 697–704, 2004.
[32]  M. Aviram, M. Rosenblat, C. L. Bisgaier, R. S. Newton, S. L. Primo-Parmo, and B. N. La Du, “Paraoxonase inhibits high-density lipoprotein oxidation and preserves its functions: a possible peroxidative role for paraoxonase,” Journal of Clinical Investigation, vol. 101, no. 8, pp. 1581–1590, 1998.
[33]  E. Chaput, D. Maubrou-Sanchez, F. D. Bellamy, and A. D. Edgar, “Fenofibrate protects lipoproteins from lipid peroxidation: synergistic interaction with α-tocopherol,” Lipids, vol. 34, no. 5, pp. 497–502, 1999.
[34]  X. Xu, M. Otsuki, H. Saito et al., “PPARα and GR differentially down-regulate the expression of nuclear factor-κB-responsive genes in vascular endothelial cells,” Endocrinology, vol. 142, no. 8, pp. 3332–3339, 2001.
[35]  F. Guéraud, J. Alary, P. Costet et al., “In vivo involvement of cytochrome P450 4A family in the oxidative metabolism of the lipid peroxidation product trans-4-hydroxy-2-nonenal, using PPARα-deficient mice,” Journal of Lipid Research, vol. 40, no. 1, pp. 152–159, 1999.
[36]  R. Kleemann, L. Verschuren, B.-J. De Rooij et al., “Evidence for anti-inflammatory activity of statins and PPARα activators in human C-reactive protein transgenic mice in vivo and in cultured human hepatocytes in vitro,” Blood, vol. 103, no. 11, pp. 4188–4194, 2004.
[37]  T. Kanda, O. Yokosuka, F. Imazeki, and H. Saisho, “Bezafibrate treatment: a new medical approach for PBC patients?” Journal of Gastroenterology, vol. 38, no. 6, pp. 573–578, 2003.
[38]  S. Nakai, T. Masaki, K. Kurokohchi, A. Deguchi, and M. Nishioka, “Combination therapy of bezafibrate and ursodeoxycholic acid in primary biliary cirrhosis: a preliminary study,” The American Journal of Gastroenterology, vol. 95, no. 1, pp. 326–327, 2000.
[39]  K. Yano, H. Kato, S. Morita, O. Takahara, H. Ishibashi, and R. Furukawa, “Is bezafibrate histologically effective for primary biliary cirrhosis?” The American Journal of Gastroenterology, vol. 97, no. 4, pp. 1075–1077, 2002.
[40]  T. Kurihara, A. Niimi, A. Maeda, M. Shigemoto, and K. Yamashita, “Bezafibrate in the treatment of primary biliary cirrhosis: comparison with ursodeoxycholic acid,” The American Journal of Gastroenterology, vol. 95, no. 10, pp. 2990–2992, 2000.
[41]  T. Kurihara, A. Maeda, M. Shigemoto, K. Yamashita, and E. Hashimoto, “Investigation into the efficacy of bezafibrate against primary biliary cirrhosis, with histological references from cases receiving long term monotherapy,” The American Journal of Gastroenterology, vol. 97, no. 1, pp. 212–214, 2002.
[42]  K. Ohmoto, Y. Mitsui, and S. Yamamoto, “Effect of bezafibrate in primary biliary cirrhosis: a pilot study,” Liver, vol. 21, no. 3, pp. 223–224, 2001.
[43]  J. W. Jonker, C. Liddle, and M. Downes, “FXR and PXR: potential therapeutic targets in cholestasis,” Journal of Steroid Biochemistry and Molecular Biology, 2011.
[44]  E. Esposito, B. Rinaldi, E. Mazzon et al., “Anti-inflammatory effect of simvastatin in an experimental model of spinal cord trauma: involvement of PPAR-alpha,” Journal of Neuroinflammation, p. 81, 2012.
[45]  J. M. Peters, T. Aoyama, A. M. Burns, and F. J. Gonzalez, “Bezafibrate is a dual ligand for PPARα and PPARβ: studies using null mice,” Biochimica et Biophysica Acta, vol. 1632, no. 1–3, pp. 80–89, 2003.
[46]  S. Iwasaki, N. Akisawa, T. Saibara, and S. Onishi, “Fibrate for treatment of primary biliary cirrhosis,” Hepatology Research, vol. 37, no. 3, pp. S515–S517, 2007.
[47]  R. Ghose, J. Mulder, R. J. von Furstenberg, S. Thevananther, F. Kuipers, and S. J. Karpen, “Rosiglitazone attenuates suppression of RXRα-dependent gene expression in inflamed liver,” Journal of Hepatology, vol. 46, no. 1, pp. 115–123, 2007.
[48]  R. Scatena, P. Bottoni, G. E. Martorana et al., “Mitochondria, ciglitazone and liver: a neglected interaction in biochemical pharmacology,” European Journal of Pharmacology, vol. 567, no. 1-2, pp. 50–58, 2007.
[49]  V. Zoete, A. Grosdidier, and O. Michielin, “Peroxisome proliferator-activated receptor structures: ligand specificity, molecular switch and interactions with regulators,” Biochimica et Biophysica Acta, vol. 1771, no. 8, pp. 915–925, 2007.
[50]  D. T. Nash, “Hyperlipoproteinemia, atherosclerosis and gemfibrozil,” Angiology, vol. 33, no. 9, pp. 594–602, 1982.
[51]  I. de Salcedo, A. L. Gorringe, J. L. Silva, and J. A. Santos, “Gemfibrozil in a group of diabetics,” Proceedings of the Royal Society of Medicine, vol. 69, supplement 2, pp. 64–70, 1976.
[52]  D. Miller-Blair, R. White, and A. Greenspan, “Acute gout involving the acromioclavicular joint following treatment with gemfibrozil,” The Journal of Rheumatology, vol. 19, no. 1, pp. 166–168, 1992.
[53]  R. P. Dellavalle, M. K. Nicholas, and L. M. Schilling, “Melanoma chemoprevention: a role for statins or fibrates?” American Journal of Therapeutics, vol. 10, no. 3, pp. 203–210, 2003.
[54]  S. Dasgupta, A. Roy, M. Jana, D. M. Hartley, and K. Pahan, “Gemfibrozil ameliorates relapsing-remitting experimental autoimmune encephalomyelitis independent of peroxisome proliferator-activated receptor-α,” Molecular Pharmacology, vol. 72, no. 4, pp. 934–946, 2007.
[55]  A. Roy and K. Pahan, “Gemfibrozil, stretching arms beyond lipid lowering,” Immunopharmacology and Immunotoxicology, vol. 31, no. 3, pp. 339–351, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133