全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PPAR Research  2012 

Misregulation of PPAR Functioning and Its Pathogenic Consequences Associated with Nonalcoholic Fatty Liver Disease in Human Obesity

DOI: 10.1155/2012/107434

Full-Text   Cite this paper   Add to My Lib

Abstract:

Nonalcoholic fatty liver disease in human obesity is characterized by the multifactorial nature of the underlying pathogenic mechanisms, which include misregulation of PPARs signaling. Liver PPAR-α downregulation with parallel PPAR-γ and SREBP-1c up-regulation may trigger major metabolic disturbances between de novo lipogenesis and fatty acid oxidation favouring the former, in association with the onset of steatosis in obesity-induced oxidative stress and related long-chain polyunsaturated fatty acid n-3 (LCPUFA n-3) depletion, insulin resistance, hypoadiponectinemia, and endoplasmic reticulum stress. Considering that antisteatotic strategies targeting PPAR-α revealed that fibrates have poor effectiveness, thiazolidinediones have weight gain limitations, and dual PPAR-α/γ agonists have safety concerns, supplementation with LCPUFA n-3 appears as a promising alternative, which achieves both significant reduction in liver steatosis scores and a positive anti-inflammatory outcome. This latter aspect is of importance as PPAR-α downregulation associated with LCPUFA n-3 depletion may play a role in increasing the DNA binding capacity of proinflammatory factors, NF-κB and AP-1, thus constituting one of the major mechanisms for the progression of steatosis to steatohepatitis. 1. Introduction 1.1. Epidemiologic Aspects Nonalcoholic fatty liver disease (NAFLD) is considered the hepatic manifestation of metabolic syndrome (MetS) and has emerged as the most frequent cause of chronic liver disease worldwide, becoming the third most common indication for liver transplantation in order to rescue patients with end-stage liver disease [1, 2]. NAFLD encompasses a wide disease spectrum ranging from simple triacylglycerol (TAG) accumulation in hepatocytes (hepatic steatosis), which is defined by accumulation of liver fat (>5% per liver weight) in the presence of <20?g of daily alcohol consumption, to steatosis with inflammation (nonalcoholic steatohepatitis, NASH), fibrosis, and cirrhosis [2, 3]. Liver biopsy is the gold standard for diagnosis and has the additional benefit of distinguishing between NASH and simple steatosis, thus allowing for the staging of the degree of fibrosis [4]. NAFLD affects 17 to 33% in the general populations, whereas that of NASH affects 2% to 3% of the population [2, 5]. In obese subjects, NAFLD incidence reaches 60% to 90% and for NASH and hepatic cirrhosis 20% to 25% and 2% to 8%, respectively. In subjects with MetS, the prevalence of NAFLD is increased fourfold compared with those without the disease, and 30% of NAFLD subjects have MetS [6,

References

[1]  M. R. Charlton, J. M. Burns, R. A. Pedersen, K. D. Watt, J. K. Heimbach, and R. A. Dierkhising, “Frequency and outcomes of liver transplantation for nonalcoholic steatohepatitis in the United States,” Gastroenterology, vol. 141, no. 4, pp. 1249–1253, 2011.
[2]  C. D. Byrne, “Non-alcoholic fatty liver disease, insulin resistance and ectopic fat: a new problem in diabetes management,” Diabetic Medicine, vol. 29, no. 9, pp. 1098–1107, 2012, Dorothy Hodgkin Lecture 2012.
[3]  L. A. Videla, R. Rodrigo, J. Araya, and J. Poniachik, “Insulin resistance and oxidative stress interdependency in non-alcoholic fatty liver disease,” Trends in Molecular Medicine, vol. 12, no. 12, pp. 555–558, 2006.
[4]  S. Saadeh, Z. M. Younossi, E. M. Remer et al., “The utility of radiological imaging in nonalcoholic fatty liver disease,” Gastroenterology, vol. 123, no. 3, pp. 745–750, 2002.
[5]  A. L. Fracanzani, L. Valenti, E. Bugianesi et al., “Risk of severe liver disease in nonalcoholic fatty liver disease with normal aminotransferase levels: a role for insulin resistance and diabetes,” Hepatology, vol. 48, no. 3, pp. 792–798, 2008.
[6]  J. D. Browning, L. S. Szczepaniak, R. Dobbins et al., “Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity,” Hepatology, vol. 40, no. 6, pp. 1387–1395, 2004.
[7]  V. Ratziu, S. Bellentani, H. Cortez-Pinto, C. Day, and G. Marchesini, “A position statement on NAFLD/NASH based on the EASL 2009 special conference,” Journal of Hepatology, vol. 53, no. 2, pp. 372–384, 2010.
[8]  J. B. Schwimmer, R. Deutsch, T. Kahen, J. E. Lavine, C. Stanley, and C. Behling, “Prevalence of fatty liver in children and adolescents,” Pediatrics, vol. 118, no. 4, pp. 1388–1393, 2006.
[9]  R. Stienstra, C. Duval, M. Müller, and S. Kersten, “PPARs, obesity, and inflammation,” PPAR Research, vol. 2007, Article ID 95974, 10 pages, 2007.
[10]  A. Kotronen, A. Sepp?l?-Lindroos, R. Bergholm, and H. Yki-J?rvinen, “Tissue specificity of insulin resistance in humans: fat in the liver rather than muscle is associated with features of the metabolic syndrome,” Diabetologia, vol. 51, no. 1, pp. 130–138, 2008.
[11]  G. Musso, R. Gambino, and M. Cassader, “Recent insights into hepatic lipid metabolism in non-alcoholic fatty liver disease (NAFLD),” Progress in Lipid Research, vol. 48, no. 1, pp. 1–26, 2009.
[12]  K. L. Donnelly, C. I. Smith, S. J. Schwarzenberg, J. Jessurun, M. D. Boldt, and E. J. Parks, “Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease,” Journal of Clinical Investigation, vol. 115, no. 5, pp. 1343–1351, 2005.
[13]  A. Aronis, Z. Madar, and O. Tirosh, “Mechanism underlying oxidative stress-mediated lipotoxicity: exposure of J774.2 macrophages to triacylglycerols facilitates mitochondrial reactive oxygen species production and cellular necrosis,” Free Radical Biology and Medicine, vol. 38, no. 9, pp. 1221–1230, 2005.
[14]  S. J. Bensinger and P. Tontonoz, “Integration of metabolism and inflammation by lipid-activated nuclear receptors,” Nature, vol. 454, no. 7203, pp. 470–477, 2008.
[15]  J. P. Berger, T. E. Akiyama, and P. T. Meinke, “PPARs: therapeutic targets for metabolic disease,” Trends in Pharmacological Sciences, vol. 26, no. 5, pp. 244–251, 2005.
[16]  L. Michalik, J. Auwerx, J. P. Berger et al., “International union of pharmacology. LXI. Peroxisome proliferator-activated receptors,” Pharmacological Reviews, vol. 58, no. 4, pp. 726–741, 2006.
[17]  M. A. Lazar, “PPARγ, 10 years later,” Biochimie, vol. 87, no. 1, pp. 9–13, 2005.
[18]  F. A. Batista, D. B. Trivella, A. Bernardes, J. Gratieri, P. S. Oliveira, A. C. Figueira, et al., “Structural insights into human peroxisome proliferator activated receptor delta (PPAR-delta) selective ligand binding,” PLoS One, vol. 7, no. 5, Article ID e33643, 2012.
[19]  B. Desvergne and W. Wahli, “Peroxisome proliferator-activated receptors: nuclear control of metabolism,” Endocrine Reviews, vol. 20, no. 5, pp. 649–688, 1999.
[20]  S. Kersten, B. Desvergne, and W. Wahli, “Roles of PPARS in health and disease,” Nature, vol. 405, no. 6785, pp. 421–424, 2000.
[21]  M. Rakhshandehroo, B. Knoch, M. Müller, and S. Kersten, “Peroxisome proliferator-activated receptor alpha target genes,” PPAR Research, vol. 2010, Article ID 612089, 20 pages, 2010.
[22]  C. N. A. Palmer, M. H. Hsu, K. J. Griffin, J. L. Raucy, and E. F. Johnson, “Peroxisome proliferator activated receptor-α expression in human liver,” Molecular Pharmacology, vol. 53, no. 1, pp. 14–22, 1998.
[23]  M. Rakhshandehroo, G. Hooiveld, M. Müller, and S. Kersten, “Comparative analysis of gene regulation by the transcription factor PPARα between mouse and human,” PLoS ONE, vol. 4, no. 8, Article ID e6796, 2009.
[24]  P. Gervois, I. Pineda Torra, G. Chinetti et al., “A truncated human peroxisome proliferator-activated receptor α splice variant with dominant negative activity,” Molecular Endocrinology, vol. 13, no. 9, pp. 1535–1549, 1999.
[25]  S. Chen, Y. Li, S. Li, and C. Yu, “A Val227Ala substitution in the peroxisome proliferator activated receptor alpha (PPAR alpha) gene associated with non-alcoholic fatty liver disease and decreased waist circumference and waist-to-hip ratio,” Journal of Gastroenterology and Hepatology, vol. 23, no. 9, pp. 1415–1418, 2008.
[26]  P. Dongiovanni, R. Rametta, A. L. Fracanzani et al., “Lack of association between peroxisome proliferator-activated receptors alpha and gamma2 polymorphisms and progressive liver damage in patients with non-alcoholic fatty liver disease: a case control study,” BMC Gastroenterology, vol. 10, article 102, 2010.
[27]  K. Schoonjans, B. Staels, and J. Auwerx, “Role of the peroxisome proliferator-activated receptor (PPAR) in mediating the effects of fibrates and fatty acids on gene expression,” Journal of Lipid Research, vol. 37, no. 5, pp. 907–925, 1996.
[28]  S. A. Kliewer, S. S. Sundseth, S. A. Jones et al., “Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors α and γ,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 9, pp. 4318–4323, 1997.
[29]  S. Luquet, J. Lopez-Soriano, D. Holst et al., “Roles of peroxisome proliferator-activated receptor delta (PPARδ) in the control of fatty acid catabolism. A new target for the treatment of metabolic syndrome,” Biochimie, vol. 86, no. 11, pp. 833–837, 2004.
[30]  L. Dubuquoy, S. Dharancy, S. Nutten, S. Pettersson, J. Auwerx, and P. Desreumaux, “Role of peroxisome proliferator-activated receptor γ and retinoid X receptor heterodimer in hepatogastroenterological diseases,” The Lancet, vol. 360, no. 9343, pp. 1410–1418, 2002.
[31]  F. Damiano, G. V. Gnoni, and L. Siculella, “Citrate carrier promoter is target of peroxisome proliferator-activated receptor alpha and gamma in hepatocytes and adipocytes,” International Journal of Biochemistry & Cell Biology, vol. 44, no. 4, pp. 659–668, 2012.
[32]  Y. Wang, K. S. L. Lam, M. H. Yau, and A. Xu, “Post-translational modifications of adiponectin: mechanisms and functional implications,” Biochemical Journal, vol. 409, no. 3, pp. 623–633, 2008.
[33]  A. Tailleux, K. Wouters, and B. Staels, “Roles of PPARs in NAFLD: potential therapeutic targets,” Biochimica Et Biophysica Acta, vol. 1821, no. 5, pp. 809–818, 2012.
[34]  Y. X. Wang, “PPARs: diverse regulators in energy metabolism and metabolic diseases,” Cell Research, vol. 20, no. 2, pp. 124–137, 2010.
[35]  A. J. Vidal-Puig, R. V. Considine, M. Jimenez-Li?an et al., “Peroxisome proliferator-activated receptor gene expression in human tissues: effects of obesity, weight loss, and regulation by insulin and glucocorticoids,” Journal of Clinical Investigation, vol. 99, no. 10, pp. 2416–2422, 1997.
[36]  K. H. Kim, S. P. Hong, K. Kim, M. J. Park, K. J. Kim, and J. Cheong, “HCV core protein induces hepatic lipid accumulation by activating SREBP1 and PPARγ,” Biochemical and Biophysical Research Communications, vol. 355, no. 4, pp. 883–888, 2007.
[37]  K. H. Kim, H. J. Shin, K. Kim et al., “Hepatitis B Virus X Protein Induces Hepatic Steatosis Via Transcriptional Activation of SREBP1 and PPARγ,” Gastroenterology, vol. 132, no. 5, pp. 1955–1967, 2007.
[38]  K. Kim, K. H. Kim, E. Ha, J. Y. Park, N. Sakamoto, and J. Cheong, “Hepatitis C virus NS5A protein increases hepatic lipid accumulation via induction of activation and expression of PPARgamma,” FEBS Letters, vol. 583, no. 17, pp. 2720–2726, 2009.
[39]  S. Gawrieh, M. C. Marion, R. Komorowski, J. Wallace, M. Charlton, A. Kissebah, et al., “Genetic variation in the peroxisome proliferator activated receptor-gamma gene is associated with histologically advanced NAFLD,” Digestive Diseases and Sciences, vol. 57, no. 4, pp. 952–957, 2012.
[40]  Z. Yang, J. Wen, Q. Li, X. Tao, Z. Ye, M. He, et al., “PPARG gene Pro12Ala variant contributes to the development of non-alcoholic fatty liver in middle-aged and older Chinese population,” Molecular and Cellular Endocrinology, vol. 348, no. 1, pp. 255–259, 2012.
[41]  S. S. Deeb, L. Fajas, M. Nemoto et al., “A Pro12Ala substitution in PPARγ2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity,” Nature Genetics, vol. 20, no. 3, pp. 284–287, 1998.
[42]  D. Altshuler, J. N. Hirschhorn, M. Klannemark et al., “The common PPARγ Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes,” Nature Genetics, vol. 26, no. 1, pp. 76–80, 2000.
[43]  A. S. F. Doney, B. Fischer, J. E. Cecil et al., “Association of the Pro12Ala and C1431T variants of PPARG and their haplotypes with susceptibility to Type 2 diabetes,” Diabetologia, vol. 47, no. 3, pp. 555–558, 2004.
[44]  W. R. Oliver, J. L. Shenk, M. R. Snaith et al., “A selective peroxisome proliferator-activated receptor δ agonist promotes reverse cholesterol transport,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 9, pp. 5306–5311, 2001.
[45]  S. Liu, B. Hatano, M. Zhao et al., “Role of peroxisome proliferator-activated receptor δ/β in hepatic metabolic regulation,” Journal of Biological Chemistry, vol. 286, no. 2, pp. 1237–1247, 2011.
[46]  U. Risérus, D. Sprecher, T. Johnson et al., “Activation of peroxisome proliferator-activated receptor (PPAR)δ promotes reversal of multiple metabolic abnormalities, Reduces oxidative stress, and increases fatty acid oxidation in moderately obese men,” Diabetes, vol. 57, no. 2, pp. 332–339, 2008.
[47]  E. M. Ooi, G. F. Watts, D. L. Sprecher, D. C. Chan, and P. H. Barrett, “Mechanism of action of a peroxisome proliferator-activated receptor (PPAR)-delta agonist on lipoprotein metabolism in dyslipidemic subjects with central obesity,” Journal of Clinical Endocrinology & Metabolism, vol. 96, no. 10, pp. 1568–1576, 2011.
[48]  H. E. Bays, S. Schwartz, T. Littlejohn III, B. Kerzner, R. M. Krauss, D. B. Karpf, et al., “MBX-8025, a novel peroxisome proliferator receptor delta agonist: lipid and other metabolic effects in dyslipidemic overweight patients treated with and without atorvastatin,” Journal of Clinical Endocrinology & Metabolism, vol. 96, no. 9, pp. 2889–2289, 2011.
[49]  Y. J. Choi, B. K. Roberts, X. Wang, J. C. Geaney, S. Naim, K. Wojnoonski K, et al., “Effects ofthe PPAR-σ agonist MBX-8025 on atherogenic dyslipidemia,” Atherosclerosis, vol. 220, no. 2, pp. 470–476, 2012.
[50]  L. Serrano-Marco, M. R. Chacón, E. Maymó-Masip, E. Barroso, L. Salvadó, M. Wabistch, et al., “TNF-α inhibits PPARβ/σ activity and SIRT1 expression through NF-κB in human adipocytes,” Biochimica Et Biophysica Acta, vol. 1821, no. 9, pp. 1177–1185, 2012.
[51]  J. Araya, R. Rodrigo, L. A. Videla et al., “Increase in long-chain polyunsaturated fatty acid n-6/n-3 ratio in relation to hepatic steatosis in patients with non-alcoholic fatty liver disease,” Clinical Science, vol. 106, no. 6, pp. 635–643, 2004.
[52]  M. R. Kashi, D. M. Torres, and S. A. Harrison, “Current and emerging therapies in nonalcoholic fatty liver disease,” Seminars in Liver Disease, vol. 28, no. 4, pp. 396–406, 2008.
[53]  J. George and C. Liddle, “Nonalcoholic fatty liver disease: pathogenesis and potential for nuclear receptors as therapeutic targets,” Molecular Pharmaceutics, vol. 5, no. 1, pp. 49–59, 2008.
[54]  S. Gawrieh, E. C. Opara, and T. R. Koch, “Oxidative stress in nonalcoholic fatty liver disease: pathogenesis and antioxidant therapies,” Journal of Investigative Medicine, vol. 52, no. 8, pp. 506–514, 2004.
[55]  H. Sies, W. Stahl, and A. Sevanian, “Nutritional, dietary and postprandial oxidative stress,” Journal of Nutrition, vol. 135, no. 5, pp. 96–972, 2005.
[56]  J. D. McGarry and D. W. Foster, “Regulation of hepatic fatty acid oxidation and ketone body production,” Annual Review of Biochemistry, vol. 49, pp. 395–420, 1980.
[57]  L. A. Videla, R. Rodrigo, M. Orellana et al., “Oxidative stress-related parameters in the liver of non-alcoholic fatty liver disease patients,” Clinical Science, vol. 106, no. 3, pp. 261–268, 2004.
[58]  L. Malaguarnera, R. Madeddu, E. Palio, N. Arena, and M. Malaguarnera, “Heme oxygenase-1 levels and oxidative stress-related parameters in non-alcoholic fatty liver disease patients,” Journal of Hepatology, vol. 42, no. 4, pp. 585–591, 2005.
[59]  C. P. M. S. Oliveira, J. Faintuch, A. Rascovski et al., “Lipid peroxidation in bariatric candidates with nonalcoholic fatty liver disease (NAFLD)—preliminary findings,” Obesity Surgery, vol. 15, no. 4, pp. 502–505, 2005.
[60]  A. J. Sanyal, C. Campbell-Sargent, F. Mirshahi et al., “Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities,” Gastroenterology, vol. 120, no. 5, pp. 1183–1192, 2001.
[61]  L. Malaguarnera, M. Di Rosa, A. M. Zambito, N. Dell'Ombra, F. Nicoletti, and M. Malaguarnera, “Chitotriosidase gene expression in Kupffer cells from patients with non-alcoholic fatty liver disease,” Gut, vol. 55, no. 9, pp. 1313–1320, 2006.
[62]  C. Loguercio, V. De Girolamo, I. De Sio et al., “Non-alcoholic fatty liver disease in an area of southern italy: main clinical, histological, and pathophysiological aspects,” Journal of Hepatology, vol. 35, no. 5, pp. 568–574, 2001.
[63]  J. L. Evans, B. A. Maddux, and I. D. Goldfine, “The molecular basis for oxidative stress-induced insulin resistance,” Antioxidants and Redox Signaling, vol. 7, no. 7-8, pp. 1040–1052, 2005.
[64]  N. Houstis, E. D. Rosen, and E. S. Lander, “Reactive oxygen species have a causal role in multiple forms of insulin resistance,” Nature, vol. 440, no. 7086, pp. 944–948, 2006.
[65]  C. Yu, Y. Chen, G. W. Cline et al., “Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase activity in muscle,” Journal of Biological Chemistry, vol. 277, no. 52, pp. 50230–50236, 2002.
[66]  S. Neschen, K. Morino, L. E. Hammond et al., “Prevention of hepatic steatosis and hepatic insulin resistance in mitochondrial acyl-CoA:glycerol-sn-3-phosphate acyltransferase 1 knockout mice,” Cell Metabolism, vol. 2, no. 1, pp. 55–65, 2005.
[67]  H. Sies, “Biochemistry of oxidative stress,” Angewandte Chemie, vol. 25, pp. 1058–1071, 1986.
[68]  L. A. Witting, “Lipid peroxidation in vivo,” Journal of the American Oil Chemists Society, vol. 42, no. 11, pp. 908–913, 1965.
[69]  A. Elizondo, J. Araya, R. Rodrigo et al., “Polyunsaturated fatty acid pattern in liver and erythrocyte phospholipids from obese patients,” Obesity, vol. 15, no. 1, pp. 24–31, 2007.
[70]  P. Pettinelli, T. del Pozo, J. Araya et al., “Enhancement in liver SREBP-1c/PPAR-α ratio and steatosis in obese patients: correlations with insulin resistance and n-3 long-chain polyunsaturated fatty acid depletion,” Biochimica et Biophysica Acta, vol. 1792, no. 11, pp. 1080–1086, 2009.
[71]  A. Elizondo, J. Araya, R. Rodrigo et al., “Effects of weight loss on liver and erythrocyte polyunsaturated fatty acid pattern and oxidative stress status in obese patients with non-alcoholic fatty liver disease,” Biological Research, vol. 41, no. 1, pp. 59–68, 2008.
[72]  L. A. Videla, R. Rodrigo, J. Araya, and J. Poniachik, “Oxidative stress and depletion of hepatic long-chain polyunsaturated fatty acids may contribute to nonalcoholic fatty liver disease,” Free Radical Biology and Medicine, vol. 37, no. 9, pp. 1499–1507, 2004.
[73]  L. Gao, J. Wang, K. R. Sekhar et al., “Novel n-3 fatty acid oxidation products activate Nrf2 by destabilizing the association between Keap1 and Cullin3,” Journal of Biological Chemistry, vol. 282, no. 4, pp. 2529–2537, 2007.
[74]  V. Fernández, G. Tapia, and L. A. Videla, “Recent advances in liver preconditioning: thyroid hormone, n-3 long-chain polyunsaturated fatty acids and iron,” World Journal of Hepatology, vol. 4, no. 4, pp. 119–128, 2012.
[75]  J. Araya, R. Rodrigo, P. Pettinelli, A. V. Araya, J. Poniachik, and L. A. Videla, “Decreased liver fatty Acid δ-6 and δ-5 desaturase activity in obese patients,” Obesity, vol. 18, no. 7, pp. 1460–1463, 2010.
[76]  M. T. Nakamura and T. Y. Nara, “Structure, function, and dietary regulation of Δ6, Δ5, and Δ9 desaturases,” Annual Review of Nutrition, vol. 24, pp. 345–376, 2004.
[77]  J. G. Gormaz, R. Rodrigo, L. A. Videla, and M. Beems, “Biosynthesis and bioavailability of long-chain polyunsaturated fatty acids in non-alcoholic fatty liver disease,” Progress in Lipid Research, vol. 49, no. 4, pp. 407–419, 2010.
[78]  A. Baylin, E. K. Kabagambe, X. Siles, and H. Campos, “Adipose tissue biomarkers of fatty acid intake,” American Journal of Clinical Nutrition, vol. 76, no. 4, pp. 750–757, 2002.
[79]  S. D. Clarke, “Nonalcoholic Steatosis and Steatohepatitis. I. Molecular mechanism for polyunsaturated fatty acid regulation of gene transcription,” American Journal of Physiology, vol. 281, no. 4, pp. G865–G869, 2001.
[80]  D. B. Jump, D. Botolin, Y. Wang, J. Xu, B. Christian, and O. Demeure, “Fatty acid regulation of hepatic gene transcription,” Journal of Nutrition, vol. 135, no. 11, pp. 2503–2506, 2005.
[81]  Y. B. Lombardo and A. G. Chicco, “Effects of dietary polyunsaturated n-3 fatty acids on dyslipidemia and insulin resistance in rodents and humans. A review,” Journal of Nutritional Biochemistry, vol. 17, no. 1, pp. 1–13, 2006.
[82]  M. Charlton, R. Sreekumar, D. Rasmussen, K. Lindor, and K. S. Nair, “Apolipoprotein synthesis in nonalcoholic steatohepatitis,” Hepatology, vol. 35, no. 4, pp. 898–904, 2002.
[83]  C. Meunier-Durmort, H. Poirier, I. Niot, C. Forest, and P. Besnard, “Up-regulation of the expression of the gene for liver fatty acid-binding protein by long-chain fatty acids,” Biochemical Journal, vol. 319, no. 2, pp. 483–487, 1996.
[84]  L. Carlsson, D. Lindén, M. Jalouli, and J. Oscarsson, “Effects of fatty acids and growth hormone on liver fatty acid binding protein and PPARα in rat liver,” American Journal of Physiology, vol. 281, no. 4, pp. E772–E781, 2001.
[85]  R. Valenzuela and L. A. Videla, “The importance of the long-chain polyunsaturated fatty acid n-6/n-3 ratio in development of non-alcoholic fatty liver associated with obesity,” Food and Function, vol. 2, no. 11, pp. 644–648, 2011.
[86]  B. D. Pacchikian, A. Essaghir, J. B. Demoulin, et al., “Hepatic n-3 polyunsaturated fatty acid depletion promotes steatosis and insulin resistance in mice: genomic analysis of cellular targets,” PLos ONE, vol. 6, no. 8, Article ID e23365, 2011.
[87]  C. Pagano, G. Soardo, W. Esposito et al., “Plasma adiponectin is decreased in nonalcoholic fatty liver disease,” European Journal of Endocrinology, vol. 152, no. 1, pp. 113–118, 2005.
[88]  Y. Arita, S. Kihara, N. Ouchi et al., “Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity,” Biochemical and Biophysical Research Communications, vol. 257, no. 1, pp. 79–83, 1999.
[89]  M. J. Czaja, “Liver injury in the setting of steatosis: crosstalk between adipokine and cytokine,” Hepatology, vol. 40, no. 1, pp. 19–22, 2004.
[90]  T. Kadowaki, T. Yamauchi, and N. Kubota, “The physiological and pathophysiological role of adiponectin and adiponectin receptors in the peripheral tissues and CNS,” FEBS Letters, vol. 582, no. 1, pp. 74–80, 2008.
[91]  X. Mao, C. K. Kikani, R. A. Riojas et al., “APPL1 binds to adiponectin receptors and mediates adiponectin signalling and function,” Nature Cell Biology, vol. 8, no. 5, pp. 516–523, 2006.
[92]  M. J. Yoon, G. Y. Lee, J. J. Chung, Y. - H. Ahn, S. H. Hong, and J. B. Kim, “Adiponectin increases fatty acid oxidation in skeletal muscle cells by sequential activation of AMP-activated protein kinase, p38 mitogen-activated protein kinase, and peroxisome proliferator-activated receptorα,” Diabetes, vol. 55, no. 9, pp. 2562–2570, 2006.
[93]  P. M. Barger, A. C. Browning, A. N. Garner, and D. P. Kelly, “p38 mitogen-activated protein kinase activates peroxisome proliferator-activated receptor α: a potential role in the cardiac metabolic stress response,” Journal of Biological Chemistry, vol. 276, no. 48, pp. 44495–44501, 2001.
[94]  P. Pettinelli and L. A. Videla, “Up-regulation of PPAR-γ mRNA expression in the liver of obese patients: an additional reinforcing lipogenic mechanism to SREBP-1c induction,” Journal of Clinical Endocrinology and Metabolism, vol. 96, no. 5, pp. 1424–1430, 2011.
[95]  S. Kaser, A. Maschen, A. Cayon et al., “Adiponectin and its receptors in non-alcoholic steatohepatitis,” Gut, vol. 54, no. 1, pp. 117–121, 2005.
[96]  M. D. Neher, S. Weckbach, M. S. Huber-Lang, and P. F. Stahel, “New insights into the role of peroxisome proliferator-activated receptors in regulating the inflammatory response after tissue injury,” PPAR Research, vol. 2012, Article ID 728461, 13 pages, 2012.
[97]  E. R. Kallwitz, A. McLachlan, and S. J. Cotler, “Role of peroxisome proliferators-activated receptors in the pathogenesis and treatment of nonalcoholic fatty liver disease,” World Journal of Gastroenterology, vol. 14, no. 1, pp. 22–28, 2008.
[98]  U. A. Boelsterli and M. Bedoucha, “Toxicological consequences of altered peroxisome proliferator-activated receptor γ (PPARγ) expression in the liver: insights from models of obesity and type 2 diabetes,” Biochemical Pharmacology, vol. 63, no. 1, pp. 1–10, 2002.
[99]  D. Greco, A. Kotronen, J. Westerbacka et al., “Gene expression in human NAFLD,” American Journal of Physiology, vol. 294, no. 5, pp. G1281–G1287, 2008.
[100]  J. Westerbacka, M. Kolak, T. Kiviluoto et al., “Genes involved in fatty acid partitioning and binding, lipolysis, monocyte/macrophage recruitment, and inflammation are overexpressed in the human fatty liver of insulin-resistant subjects,” Diabetes, vol. 56, no. 11, pp. 2759–2765, 2007.
[101]  R. Marfella, C. Di Filippo, M. Portoghese et al., “Myocardial lipid accumulation in patients with pressure-overloaded heart and metabolic syndrome,” Journal of Lipid Research, vol. 50, no. 11, pp. 2314–2323, 2009.
[102]  S. Nielsen, Z. Guo, C. M. Johnson, D. D. Hensrud, and M. D. Jensen, “Splanchnic lipolysis in human obesity,” Journal of Clinical Investigation, vol. 113, no. 11, pp. 1582–1588, 2004.
[103]  E. Fabbrini, B. S. Mohammed, F. Magkos, K. M. Korenblat, B. W. Patterson, and S. Klein, “Alterations in adipose tissue and hepatic lipid kinetics in obese men and women with nonalcoholic fatty liver disease,” Gastroenterology, vol. 134, no. 2, pp. 424–431, 2008.
[104]  J. M. Schwarz, P. Linfoot, D. Dare, and K. Aghajanian, “Hepatic de novo lipogenesis in normoinsulinemic and hyperinsulinemic subjects consuming high-fat, low-carbohydrate and low-fat, high-carbohydrate isoenergetic diets,” American Journal of Clinical Nutrition, vol. 77, no. 1, pp. 43–50, 2003.
[105]  J. D. Horton, J. L. Goldstein, and M. S. Brown, “SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver,” Journal of Clinical Investigation, vol. 109, no. 9, pp. 1125–1131, 2002.
[106]  S. Polvani, M. Tarocchi, and A. Galli, “PPARγ and oxidative stress: con(β) catenating NRF2 and FOXO,” PPAR Research, vol. 2012, Article ID 641087, 15 pages, 2012.
[107]  O. Cheung and A. J. Sanyal, “Abnormalities of lipid metabolism in nonalcoholic fatty liver disease,” Seminars in Liver Disease, vol. 28, no. 4, pp. 351–359, 2008.
[108]  Z. Zheng, C. Zhang, and K. Zhang, “Role of unfolded protein response in lipogenesis,” World Journal of Gastroenterology, vol. 2, no. 6, pp. 203–207, 2010.
[109]  G. S. Hotamisligil, “Endoplasmic reticulum stress and the inflammatory basis of metabolic disease,” Cell, vol. 140, no. 6, pp. 900–917, 2010.
[110]  M. P. Mollica, L. Lionetti, R. Putti, G. Cavaliere, M. Gaita, and A. Barletta, “From chronic overfeeding to hepatic injury: role of endoplasmic reticulum stress and inflammation,” Nutrition, Metabolism and Cardiovascular Diseases, vol. 21, no. 3, pp. 222–230, 2011.
[111]  G. Boden, X. Duan, C. Homko et al., “Increase in endoplasmic reticulum stress-related proteins and genes in adipose tissue of obese, insulin-resistant individuals,” Diabetes, vol. 57, no. 9, pp. 2438–2444, 2008.
[112]  A. Chakrabarti, A. W. Chen, and J. D. Varner, “A review of the mammalian unfolded protein response,” Biotechnology and Bioengineering, vol. 108, no. 12, pp. 2777–2793, 2011.
[113]  M. J. Gething, “Role and regulation of the ER chaperone BiP,” Seminars in Cell and Developmental Biology, vol. 10, no. 5, pp. 465–472, 1999.
[114]  H. Malhi and R. J. Kaufman, “Endoplasmic reticulum stress in liver disease,” Journal of Hepatology, vol. 54, no. 4, pp. 795–809, 2011.
[115]  A. Z. Reznick and L. Packer, “Oxidative damage to proteins: spectrophotometric method for carbonyl assay,” Methods in Enzymology, vol. 233, pp. 357–363, 1994.
[116]  R. T. Dean, S. Gieseg, and M. J. Davies, “Reactive species and their accumulation on radical-damaged proteins,” Trends in Biochemical Sciences, vol. 18, no. 11, pp. 437–441, 1993.
[117]  E. R. Stadtman, “Metal ion-catalyzed oxidation of proteins: biochemical mechanism and biological consequences,” Free Radical Biology and Medicine, vol. 9, no. 4, pp. 315–325, 1990.
[118]  M. F. Gregor, L. Yang, E. Fabbrini et al., “Endoplasmic reticulum stress is reduced in tissues of obese subjects after weight loss,” Diabetes, vol. 58, no. 3, pp. 693–700, 2009.
[119]  P. Puri, F. Mirshahi, O. Cheung et al., “Activation and dysregulation of the unfolded protein response in nonalcoholic fatty liver disease,” Gastroenterology, vol. 134, no. 2, pp. 568–576, 2008.
[120]  N. K. Sharma, S. K. Das, A. K. Mondal et al., “Endoplasmic reticulum stress markers are associated with obesity in nondiabetic subjects,” Journal of Clinical Endocrinology and Metabolism, vol. 93, no. 11, pp. 4532–4541, 2008.
[121]  C. Appenzeller-Herzog, “Glutathione- and non-glutathione-based oxidant control in the endoplasmic reticulum,” Journal of Cell Science, vol. 124, part 6, pp. 847–855, 2011.
[122]  I. Kim, W. Xu, and J. C. Reed, “Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities,” Nature Reviews Drug Discovery, vol. 7, no. 12, pp. 1013–1030, 2008.
[123]  M. Orellana, R. Rodrigo, N. Varela et al., “Relationship between in vivo chlorzoxazone hydroxylation, hepatic cytochrome P450 2E1 content and liver injury in obese non-alcoholic fatty liver disease patients,” Hepatology Research, vol. 34, no. 1, pp. 57–63, 2006.
[124]  S. Seki, T. Kitada, and H. Sakaguchi, “Clinicopathological significance of oxidative cellular damage in non-alcoholic fatty liver diseases,” Hepatology Research, vol. 33, no. 2, pp. 132–134, 2005.
[125]  N. Chalasani, M. A. Deeg, and D. W. Crabb, “Systemic levels of lipid peroxidation and its metabolic and dietary correlates in patients with nonalcoholic steatohepatitis,” American Journal of Gastroenterology, vol. 99, no. 8, pp. 1497–1502, 2004.
[126]  Z. Yesilova, H. Yaman, C. Oktenli et al., “Systemic markers of lipid peroxidation and antioxidants in patients with nonalcoholic fatty liver disease,” American Journal of Gastroenterology, vol. 100, no. 4, pp. 850–855, 2005.
[127]  M. Konishi, M. Iwasa, J. Araki et al., “Increased lipid peroxidation in patients with non-alcoholic fatty liver disease and chronic hepatitis C as measured by the plasma level of 8-isoprostane,” Journal of Gastroenterology and Hepatology, vol. 21, no. 12, pp. 1821–1825, 2006.
[128]  G. Robertson, I. Leclercq, and G. C. Farrell, “Nonalcoholic Steatosis and Steatohepatitis. II. Cytochrome P-450 enzymes and oxidative stress,” American Journal of Physiology, vol. 281, no. 5, pp. G1135–G1139, 2001.
[129]  M. Pérez-Carreras, P. Del Hoyo, M. A. Martín et al., “Defective hepatic mitochondrial respiratory chain in patients with nonalcoholic steatohepatitis,” Hepatology, vol. 38, no. 4, pp. 999–1007, 2003.
[130]  H. Cortez-Pinto, J. Chatham, V. P. Chacko, C. Arnold, A. Rashid, and A. M. Diehl, “Alterations in liver ATP homeostasis in human nonalcoholic steatohepatitis: a pilot study,” Journal of the American Medical Association, vol. 282, no. 17, pp. 1659–1664, 1999.
[131]  L. A. Videla, G. Tapia, R. Rodrigo et al., “Liver NF-κB and AP-1 DNA binding in obese patients,” Obesity, vol. 17, no. 5, pp. 973–979, 2009.
[132]  P. S. Ribeiro, H. Cortez-Pinto, S. Solá et al., “Hepatocyte apoptosis, expression of death receptors, and activation of NF-κB in the liver of nonalcoholic and alcoholic steatohepatitis patients,” American Journal of Gastroenterology, vol. 99, no. 9, pp. 1708–1717, 2004.
[133]  G. Gloire, S. Legrand-Poels, and J. Piette, “NF-κB activation by reactive oxygen species: fifteen years later,” Biochemical Pharmacology, vol. 72, no. 11, pp. 1493–1505, 2006.
[134]  W. E. Naugler and M. Karin, “NF-κB and cancer—identifying targets and mechanisms,” Current Opinion in Genetics and Development, vol. 18, no. 1, pp. 19–26, 2008.
[135]  H. Kamata, S. I. Honda, S. Maeda, L. Chang, H. Hirata, and M. Karin, “Reactive oxygen species promote TNFα-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases,” Cell, vol. 120, no. 5, pp. 649–661, 2005.
[136]  L. A. Videla, “Liver NF-κB and AP-1 activation and PPAR-α expression are negatively correlated in obese patients: pro-inflammatory implications,” Clinical Nutrition, vol. 29, no. 5, pp. 687–688, 2010.
[137]  A. J. Wigg, I. C. Roberts-Thomson, R. B. Dymock, P. J. McCarthy, R. H. Grose, and A. G. Cummins, “The role of small intestinal bacterial overgrowth, intestinal permeability, endotoxaemia, and tumour necrosis factor α in the pathogenesis of non-alcoholic steatohepatitis,” Gut, vol. 48, no. 2, pp. 206–211, 2001.
[138]  J. Crespo, A. Cayoen, P. Fernendez-Gil et al., “Gene expression of tumor necrosis factor α and TNF-receptors, p55 and p75, in nonalcoholic steatohepatitis patients,” Hepatology, vol. 34, no. 6, pp. 1158–1163, 2001.
[139]  J. M. Hui, A. Hodge, G. C. Farrell, J. G. Kench, A. Kriketos, and J. George, “Beyond insulin resistance in NASH: TNF-α or adiponectin?” Hepatology, vol. 40, no. 1, pp. 46–54, 2004.
[140]  A. Guerra Ruiz, F. Casafont, J. Crespo et al., “Lipopolysaccharide-binding protein plasma levels and liver TNF-alpha gene expression in obese patients: evidence for the potential role of endotoxin in the pathogenesis of non-alcoholic steatohepatitis,” Obesity Surgery, vol. 17, no. 10, pp. 1374–1380, 2007.
[141]  R. F. Schwabe, E. Seki, and D. A. Brenner, “Toll-like receptor signaling in the liver,” Gastroenterology, vol. 130, no. 6, pp. 1886–1900, 2006.
[142]  M. S. Hayden and S. Ghosh, “Signaling to NF-κB,” Genes and Development, vol. 18, no. 18, pp. 2195–2224, 2004.
[143]  C. L. Gentile, M. A. Frye, and M. J. Pagliassotti, “Fatty acids and the endoplasmic reticulum in nonalcoholic fatty liver disease,” BioFactors, vol. 37, no. 1, pp. 8–16, 2011.
[144]  M. Capanni, F. Calella, M. R. Biagini et al., “Prolonged n-3 polyunsaturated fatty acid supplementation ameliorates hepatic steatosis in patients with non-alcoholic fatty liver disease: a pilot study,” Alimentary Pharmacology and Therapeutics, vol. 23, no. 8, pp. 1143–1151, 2006.
[145]  L. Spadaro, O. Magliocco, D. Spampinato et al., “Effects of n-3 polyunsaturated fatty acids in subjects with nonalcoholic fatty liver disease,” Digestive and Liver Disease, vol. 40, no. 3, pp. 194–199, 2008.
[146]  F. S. Zhu, S. Liu, X. M. Chen, Z. G. Huang, and D. W. Zhang, “Effects of n-3 polyunsaturated fatty acids from seal oils on nonalcoholic fatty liver disease associated with hyperlipidemia,” World Journal of Gastroenterology, vol. 14, no. 41, pp. 6395–6400, 2008.
[147]  A. Hatzitolios, C. Savopoulos, G. Lazaraki et al., “Efficacy of omega-3 fatty acids, atorvastatin and orlistat in non-alcoholic fatty liver disease with dyslipidemia,” Indian Journal of Gastroenterology, vol. 23, no. 4, pp. 131–134, 2004.
[148]  N. Tanaka, K. Sano, A. Horiuchi, E. Tanaka, K. Kiyosawa, and T. Aoyama, “Highly purified eicosapentaenoic acid treatment improves nonalcoholic steatohepatitis,” Journal of Clinical Gastroenterology, vol. 42, no. 4, pp. 413–418, 2008.
[149]  H. M. Parker, N. A. Johnson, C. A. Burdon, J. S. Cohn, H. T. O'Connor, and J. George, “Omega-3 supplementation and non-alcoholic fatty liver disease: a systematic and meta-analysis,” Journal of Hepatology, vol. 56, no. 4, pp. 944–951, 2012.
[150]  D. B. Jump, “N-3 polyunsaturated fatty acid regulation of hepatic gene transcription,” Current Opinion in Lipidology, vol. 19, no. 3, pp. 242–247, 2008.
[151]  B. De Roos, Y. Mavrommatis, and I. A. Brouwer, “Long-chain n-3 polyunsaturated fatty acids: new insights into mechanisms relating to inflammation and coronary heart disease,” British Journal of Pharmacology, vol. 158, no. 2, pp. 413–428, 2009.
[152]  H. Shapiro, M. Tehilla, J. Attal-Singer, R. Bruck, R. Luzzatti, and P. Singer, “The therapeutic potential of long-chain omega-3 fatty acids in nonalcoholic fatty liver disease,” Clinical Nutrition, vol. 30, no. 1, pp. 6–19, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133