Background. High-quality clinical and genetic descriptions are crucial to improve knowledge of orofacial clefts and support specific healthcare polices. The objective of this study is to discuss the potential and perspectives of the Brazilian Database on Orofacial Clefts. Methods. From 2008 to 2010, clinical and familial information on 370 subjects was collected by geneticists in eight different services. Data was centrally processed using an international system for case classification and coding. Results. Cleft lip with cleft palate amounted to 198 (53.5%), cleft palate to 99 (26.8%), and cleft lip to 73 (19.7%) cases. Parental consanguinity was present in 5.7% and familial history of cleft was present in 26.3% subjects. Rate of associated major plus minor defects was 48% and syndromic cases amounted to 25% of the samples. Conclusions. Overall results corroborate the literature. Adopted tools are user friendly and could be incorporated into routine patient care. The BDOC exemplifies a network for clinical and genetic research. The data may be useful to develop and improve personalized treatment, family planning, and healthcare policies. This experience should be of interest for geneticists, laboratory-based researchers, and clinicians entrusted with OC worldwide. 1. Introduction Accurate and detailed phenotype description of orofacial clefts (OC) is crucial to produce good etiological and epidemiological studies. In this regard, attention should be given to subphenotypic features of the lip (completeness of the cleft, presence of pits/prints, dental and orbicularis oris muscle anomalies), and palate (completeness of the cleft, submucous defects, bifid uvula, and ankyloglossia). Similarly important is the screening of minor and major associated defects which has prevalence rate that ranges from 8% to 75%. Although there are true population differences, methodological factors such as sample source and size, method of ascertainment, case definitions, inclusion criteria, coding system, and case classification account for much of this wide variation [1–13]. In the postgenomic era capturing and processing information on human genetic variation, gene-environment interactions, and genotype-phenotype correlations are essential to develop personalized interventions. This has been reinforced by the Human Variome Project (HVP), an international effort launched in 2006. The HVP aim is to develop and make knowledge housed within linked databases on genes, mutations, and variants accessible to the research and medical communities [14, 15]. Databases may also serve
References
[1]
M. J. Dixon, M. L. Marazita, T. H. Beaty, and J. C. Murray, “Cleft lip and palate: understanding genetic and environmental influences,” Nature Reviews Genetics, vol. 12, no. 3, pp. 167–178, 2011.
[2]
P. A. Mossey, J. Little, R. G. Munger, M. J. Dixon, and W. C. Shaw, “Cleft lip and palate,” The Lancet, vol. 374, no. 9703, pp. 1773–1785, 2009.
[3]
P. A. Mossey, W. C. Shaw, R. G. Munger, J. C. Murray, J. Murthy, and J. Little, “Global oral health inequalities: challenges in the prevention and management of orofacial clefts and potential solutions,” Advances in Dental Research, vol. 23, pp. 247–248, 2011.
[4]
A. J. M. Luijsterburg and C. Vermeij-Keers, “Ten years recording common oral clefts with a new descriptive system,” The Cleft Palate-Craniofacial Journal, vol. 48, no. 2, pp. 173–182, 2011.
[5]
R. J. Shprintzen, V. L. Siegel-Sadewitz, J. Amato, and R. B. Goldberg, “Anomalies associated with cleft lip, cleft palate, or both,” American Journal of Medical Genetics, vol. 20, no. 4, pp. 585–595, 1985.
[6]
J. Milerad, O. Larson, C. Hagberg, and M. Ideberg, “Associated malformations in infants with cleft lip and palate: a prospective, population-based study,” Pediatrics, vol. 100, no. 2, pp. 180–186, 1997.
[7]
L. A. Croen, G. M. Shaw, C. R. Wasserman, and M. M. Tolarova, “Racial and ethnic variations in the prevalence of orofacial clefts in California, 1983–1992,” American Journal of Medical Genetics, vol. 79, pp. 42–47, 1998.
[8]
M. M. Tolarova and J. Cervenca, “Classification and Birth prevalence of orofacial clefts,” American Journal of Medical Genetics, vol. 75, pp. 126–137, 1998.
[9]
S. Beriaghi, S. Myers, S. Jensen, S. Kaimal, C. Chan, and G. B. Schaefer, “Cleft lip and palate: association with other congenital malformations,” Journal of Clinical Pediatric Dentistry, vol. 33, no. 3, pp. 207–210, 2009.
[10]
D. F. Wyszynski, A. Sárk?zi, and A. E. Czeizel, “Oral clefts with associated anomalies: methodological issues,” The Cleft Palate-Craniofacial Journal, vol. 43, no. 1, pp. 1–6, 2006.
[11]
A. E. Genisca, J. L. Frías, C. S. Broussard et al., “Orofacial clefts in the national birth defects prevention study, 1997–2004,” American Journal of Medical Genetics A, vol. 149, no. 6, pp. 1149–1158, 2009.
[12]
P. Mastroiacovo, A. Maraschini, E. Leoncini et al., “Prevalence at birth of cleft lip with or without cleft palate: data from the International Perinatal Database of Typical Oral Clefts (IPDTOC),” The Cleft Palate-Craniofacial Journal, vol. 48, no. 1, pp. 66–81, 2011.
[13]
M. Rittler, V. Cosentino, J. S. López-Camelo, J. C. Murray, G. Wehby, and E. E. Castilla, “Associated anomalies among infants with oral clefts at birth and during a 1-year follow-up,” American Journal of Medical Genetics A, vol. 155, no. 7, pp. 1588–1596, 2011.
[14]
J. Kaput, R. G. Cotton, L. Hardman, et al., “Planning the human variome project. The spain report,” Human Mutation, vol. 30, pp. 496–510, 2009.
[15]
G. P. Patrinos, J. A. Aama, A. A. Aqeel et al., “Recommendations for genetic variation data capture in developing countries to ensure a comprehensive worldwide data collection,” Human Mutation, vol. 32, pp. 2–9, 2010.
[16]
L. D. Botto, E. Robert-Gnansia, C. Siffel, J. Harris, B. Borman, and P. Mastroiacovo, “Fostering international collaboration in birth defects research and prevention: a perspective from the International Clearinghouse for Birth Defects Surveillance and Research,” American Journal of Public Health, vol. 96, no. 5, pp. 774–780, 2006.
[17]
I. L. Monlleo, P. A. Mossey, and V. L. Gil-da-Silva-Lopes, “Evaluation of craniofacial care outside the brazilian reference network for craniofacial treatment,” The Cleft Palate-Craniofacial Journal, vol. 46, no. 2, pp. 204–211, 2009.
[18]
World Health Organisation (WHO), Global Registry and Database on Craniofacial Anomalies, WHO, Geneva, Switzerland, 2003.
[19]
World Health Organisation (WHO), Addressing the Global Challenges of Craniofacial Anomalies, WHO, Geneva, Switzerland, 2006.
[20]
W. Shaw, “Global strategies to reduce the health-care burden of craniofacial anomalies: report of WHO meetings on International. Collaborative Research on Craniofacial Anomalies,” The Cleft Palate-Craniofacial Journal, vol. 41, no. 3, pp. 238–243, 2004.
[21]
I. L. Monlleó and V. L. Gil-da-Silva-Lopes, “Anomalias craniofaciais: descricao e avaliacao das caracteristicas gerais da atencao no Sistema Unico de Saude,” Cad Saude Publica, vol. 22, pp. 913–922, 2006.
[22]
I. L. Monlleó and V. L. Gil-Da-Silva-Lopes, “Brazil's Craniofacial project: genetic evaluation and counseling in the reference network for craniofacial treatment,” The Cleft Palate-Craniofacial Journal, vol. 43, no. 5, pp. 577–579, 2006.
[23]
A. L. C. Righeto, J. Huber, J. C. Machado, and D. G. Melo, “Anomalias congênitas: validade das informa??es das declara??es de nascido vivo em uma maternidade de Ribeir?o Preto, S?o Paulo,” Pediatria, vol. 30, pp. 159–164, 2008.
[24]
A. L. Geremias, M. F. Almeida, and M. P. O. Flores, “Avalia??o das Declara??es de Nascido Vivo como fonte de informa??es sobre defeitos congênitos,” Revista Brasileira de Epidemiologia, vol. 12, pp. 60–68, 2009.
[25]
D. V. Luquetti and R. J. Koifman, “Quality of reporting on birth defects in birth certificates: case study from a Brazilian reference hospital,” Cadernos de Saude Publica, vol. 25, no. 8, pp. 1721–1731, 2009.
[26]
World Health Organization (WHO), “Programmes and projects,” http://www.who.int/genomics/anomalies/americas_registry/en/index.html.
[27]
I. L. Monlleó, Aten??o a pessoas com anomalias craniofaciais no Brasil: avalia??o e propostas para o Sistema único de Saúde, Unicamp, Campinas, Brazil, 2008.
[28]
I. L. Monlleó, P. A. Mossey, and V. L. Gil-da-Silva-Lopes, “The Brazilian database on orofacial clefts: preliminary validation,” in Proceedings of the 11th International Congress on Cleft Lip and Palate and Related Craniofacial Anomalies, Fortaleza, Brazil, 2009.
[29]
Instituto Brasileiro de Geografia e Estatistica (IBGE), Censo 2010, http://www.censo2010.ibge.gov.br/sinopse/index.php?dados=4&uf=00.
[30]
D. D. G. Horovitz, J. C. Llerena, and R. A. Mattos, “Aten??o aos defeitos congênitos no Brasil: características do atendimento e propostas para formula??o de políticas públicas em genética clínica,” Cadernos de Saúde Pública, vol. 22, pp. 2599–2609, 2006.
[31]
M. I. B. Fontes, L. N. Almeida, G. O. Reis Jr. et al., “Local strategies to address health needs of individuals with orofacial clefts in Alagoas, Brazil,” The Cleft Palate-Craniofacial Journal, 2012.
[32]
D. R. FitzPatrick, P. A. M. Raine, and J. G. Boorman, “Facial clefts in the west of Scotland in the period 1980–1984: epidemiology and genetic diagnoses,” Journal of Medical Genetics, vol. 31, no. 2, pp. 126–129, 1994.
[33]
G. M. Shaw, S. L. Carmichael, W. Yang, J. A. Harris, and E. J. Lammer, “Congenital malformations in births with orofacial clefts among 3.6 million California births, 1983–1997,” American Journal of Medical Genetics, vol. 125, no. 3, pp. 250–256, 2004.
[34]
N. Freire-Maia, “Inbreeding in Brazil,” American Journal of Human Genetics, vol. 9, no. 4, pp. 284–298, 1957.
[35]
N. Freire-Maia, “Genetic effects in Brazilian populations due to consanguineous marriages,” American Journal of Medical Genetics, vol. 35, no. 1, pp. 115–117, 1990.
[36]
N. Freire-Maia, “Consanguinity marriages in Brazil,” Revista Brasileira de Biologia, vol. 50, no. 4, pp. 863–866, 1990.
[37]
E. W. Harville, A. J. Wilcox, R. T. Lie, H. Vindenes, and F. ?byholm, “Cleft lip and palate versus cleft lip only: are they distinct defects?” American Journal of Epidemiology, vol. 162, no. 5, pp. 448–453, 2005.
[38]
D. Grosen, C. Chevrier, A. Skytthe et al., “A cohort study of recurrence patterns among more than 54000 relatives of oral cleft cases in Denmark: support for the multifactorial threshold model of inheritance,” Journal of Medical Genetics, vol. 47, no. 3, pp. 162–168, 2010.
[39]
F. Rahimov, M. L. Marazita, A. Visel et al., “Disruption of an AP-2α binding site in an IRF6 enhancer is associated with cleft lip,” Nature Genetics, vol. 40, no. 11, pp. 1341–1347, 2008.
[40]
A. P. Herkrath, F. J. Herkrath, M. A. Rebelo, and M. V. Vettore, “Parental age as a risk factor for non-syndromic oral clefts: a meta analysis,” Journal of Dentistry, vol. 40, pp. 3–14, 2012.
[41]
R. P. Strauss and H. Broder, “Children with cleft lip/palate and mental retardation: a subpopulation of cleft-craniofacial team patients,” The Cleft Palate-Craniofacial Journal, vol. 30, pp. 548–556, 1993.
[42]
Online Mendilian Inheritance in Man (OMIM), “Syndromes with cleft lip and or cleft palate,” http://www.ncbi.nlm.nih.gov/omim.
[43]
World Health Organization (WHO), Medical Genetic Services in Developing Countries. the Ethical, Legal and Social Implications of Genetic Testing and Screening, Human Genetics: Chronic Diseases and Health Promotion, WHO, Geneva, 2006.
[44]
A. S. Daar, K. Berndtson, D. L. Persad, and P. A. Singer, “How can developing countries harness biotechnology to improve health?” BMC Public Health, vol. 7, article 346, 2007.
[45]
M. R. Kohonen-Corish, J. Y. Al-Aama, A. D. Auerbach et al., “Human Variome Project Meeting. How to catch all those mutations—the report of the third Human Variome Project Meeting, UNESCO Paris, May 2010,” Human Mutation, vol. 31, no. 12, pp. 1374–1381, 2010.
[46]
S. A. Rasmussen, R. S. Olney, L. B. Holmes, A. E. Lin, K. M. Keppler-Noreuil, and C. A. Moore, “Guidelines for case classification for the National Birth Defects Prevention Study,” Birth Defects Research A, vol. 67, no. 3, pp. 193–201, 2003.