A novel noninvasive technique was applied to measure velocity within slow conducting axons in the distal extreme of the sciatic nerve (i.e., digital nerve) in a rat model. The technique is based on the extraction of rectified multiple unit activity (MUA) from in vivo whole nerve compound responses. This method reliably identifies compound action potentials in thinly myelinated fibers conducting at a range of 9–18?m/s ( axons), as well as in a subgroup of unmyelinated C fibers conducting at approximately 1-2?m/s. The sensitivity of the method to C-fiber conduction was confirmed by the progressive decrement of the responses in the 1-2?m/s range over a 20-day period following the topical application of capsaicin (ANOVA ). Increasing the frequency of applied repetitive stimulation over a range of 0.75?Hz to 6.0?Hz produced slowing of conduction and a significant decrease in the magnitude of the compound C-fiber response (ANOVA ). This technique offers a unique opportunity for the noninvasive, repeatable, and quantitative assessment of velocity in the subsets of and C fibers in parallel with the evaluation of fast nerve conduction. 1. Introduction The evaluation of peripheral nerve conduction velocity (NCV) (CAP: capsaicin, HFRS: high frequency repetitive stimulation, MUA: multiple unit activity, NCV: nerve conduction velocity, NFD: nerve fiber density, and SFN: small fiber neuropathy) is a well-established and highly utilized procedure for the assessment of the pattern, symmetry and extent of neuropathy in both pre-clinical and clinical studies [1–4]. When properly performed, NCV provides a sensitive, objective, and specific index of the onset and progression of multiple forms of nerve damage. C fibers make up the majority of fibers in some nerve segments; however, standard NCV measures are only sensitive to activity in fast conducting, heavily myelinated axons. The in vivo assessment of conduction in small diameter axons is a formidable task due to the requirement of high-threshold stimulation, asynchronous, slow conduction and phase cancellation with distance [5]. The inability to assess conduction, in thinly myelinated Aδ axons or in unmyelinated C fibers is a severe limitation of NCV procedures. There is a growing recognition that many forms of idiopathic small fiber neuropathies (SFNs) may have been poorly diagnosed and their prevalence underestimated due, in part, to a lack of sensitive, non-invasive measures of this condition [5–10]. SFN can result in pain, paresthesias, abnormal thermal sensitivity, and various autonomic dysfunctions. Emerging data
References
[1]
J. C. Arezzo, “New developments in the diagnosis of diabetic neuropathy,” American Journal of Medicine, vol. 107, no. 2, pp. 9S–16S, 1999.
[2]
O. Boyraz and M. Saracoglu, “The effect of obesity on the assessment of diabetic peripheral neuropathy: a comparison of Michigan patient version test and Michigan physical assessment,” Diabetes Research and Clinical Practice, vol. 90, no. 3, pp. 256–260, 2010.
[3]
G. Cavaletti and P. Marmiroli, “Chemotherapy-induced peripheral neurotoxicity,” Nature Reviews Neurology, vol. 6, no. 12, pp. 657–666, 2010.
[4]
P. J. Dyck, J. W. Albers, H. Andersen et al., “Diabetic polyneuropathies: update on research definition, diagnostic criteria and estimation of severity,” Diabetes/Metabolism Research and Reviews, vol. 27, no. 7, pp. 620–628, 2011.
[5]
J. C. Arezzo and E. Zotova, “Electrophysiologic measures of diabetic neuropathy: mechanism and meaning,” International Review of Neurobiology, vol. 50, pp. 229–255, 2002.
[6]
D. Lacomis, “Small-fiber neuropathy,” Muscle and Nerve, vol. 26, no. 2, pp. 173–188, 2002.
[7]
E. Fink and A. L. Oaklander, “Small-fiber neuropathy: answering the burning questions,” Science of Aging Knowledge Environment, vol. 2006, no. 6, article pe7, 2006.
[8]
E. L. Feldman, D. R. Cornblath, J. Porter, R. Dworkin, and S. Scherer, “National Institute of Neurological Disorders and Stroke (NINDS): advances in understanding and treating neuropathy, 24-25 October 2006; Bethesda, Maryland,” Journal of the Peripheral Nervous System, vol. 13, no. 1, pp. 1–6, 2008.
[9]
J. C. Arezzo, M. S. Litwak, and E. G. Zotova, “Correlation and dissociation of electrophysiology and histopathology in the assessment of toxic neuropathy,” Toxicologic Pathology, vol. 39, no. 1, pp. 46–51, 2011.
[10]
Y. So, “New insights into small fiber neuropathy,” Annals of Neurology, vol. 71, no. 1, pp. 3–4, 2012.
[11]
S. Yagihashi, M. Kamijo, Y. Ido, and D. J. Mirrlees, “Effects of long-term aldose reductase inhibition on development of experimental diabetic neuropathy. Ultrastructural and morphometric studies of sural nerve in streptozocin-induced diabetic rats,” Diabetes, vol. 39, no. 6, pp. 690–696, 1990.
[12]
A. J. M. Boulton, A. I. Vinik, J. C. Arezzo et al., “Diabetic neuropathies: a statement by the American Diabetes Association,” Diabetes Care, vol. 28, no. 4, pp. 956–962, 2005.
[13]
S. J. L. Flatters and G. J. Bennett, “Studies of peripheral sensory nerves in paclitaxel-induced painful peripheral neuropathy: evidence for mitochondrial dysfunction,” Pain, vol. 122, no. 3, pp. 245–257, 2006.
[14]
S. C. Keswani, C. Jack, C. Zhou, and A. H?ke, “Establishment of a rodent model of HIV-associated sensory neuropathy,” Journal of Neuroscience, vol. 26, no. 40, pp. 10299–10304, 2006.
[15]
J. J. Lee, J. A. Low, E. Croarkin et al., “Changes in neurologic function tests may predict neurotoxicity caused by ixabepilone,” Journal of Clinical Oncology, vol. 24, no. 13, pp. 2084–2091, 2006.
[16]
R. M. Herman, J. B. Brower, D. G. Stoddard et al., “Prevalence of somatic small fiber neuropathy in obesity,” International Journal of Obesity, vol. 31, no. 2, pp. 226–235, 2007.
[17]
A. I. Vinik and D. Ziegler, “Diabetic cardiovascular autonomic neuropathy,” Circulation, vol. 115, no. 3, pp. 387–397, 2007.
[18]
A. Gonzalez-Duarte, J. Robinson-Papp, and D. M. Simpson, “Diagnosis and management of HIV-associated neuropathy,” Neurologic Clinics, vol. 26, no. 3, pp. 821–832, 2008.
[19]
H. W. Jin, S. J. L. Flatters, W. H. Xiao, H. L. Mulhern, and G. J. Bennett, “Prevention of paclitaxel-evoked painful peripheral neuropathy by acetyl-l-carnitine: effects on axonal mitochondria, sensory nerve fiber terminal arbors, and cutaneous Langerhans cells,” Experimental Neurology, vol. 210, no. 1, pp. 229–237, 2008.
[20]
S. L?seth, S. I. Mellgren, R. Jorde, S. Lindal, and E. Stalberg, “Polyneuropathy in type 1 and type 2 diabetes: comparison of nerve conduction studies, thermal perception thresholds and intraepidermal nerve fibre densities,” Diabetes/Metabolism Research and Reviews, vol. 26, no. 2, pp. 100–106, 2010.
[21]
P. Vivithanaporn, G. Heo, J. Gamble et al., “Neurologic disease burden in treated HIV/AIDS predicts survival: a population-based study,” Neurology, vol. 75, no. 13, pp. 1150–1158, 2010.
[22]
J. Tavee and D. Culver, “Sarcoidosis and small-fiber neuropathy,” Current Pain and Headache Reports, vol. 15, no. 3, pp. 201–206, 2011.
[23]
W. H. Xiao, H. Zheng, F. Y. Zheng, R. Nuydens, T. F. Meert, and G. J. Bennett, “Mitochondrial abnormality in sensory, but not motor, axons in paclitaxel-evoked painful peripheral neuropathy in the rat,” Neuroscience, vol. 199, pp. 461–469, 2011.
[24]
W. H. Xiao, H. Zheng, and G. J. Bennett, “Characterization of oxaliplatin-induced chronic painful peripheral neuropathy in the rat and comparison with the neuropathy induced by paclitaxel,” Neuroscience, vol. 203, pp. 194–206, 2012.
[25]
M. Polydefkis, P. Hauer, J. W. Griffin, and J. C. McArthur, “Skin biopsy as a tool to assess distal small fiber innervation in diabetic neuropathy,” Diabetes Technology and Therapeutics, vol. 3, no. 1, pp. 23–28, 2001.
[26]
E. Hoitsma, J. P. H. Reulen, M. de Baets, M. Drent, F. Spaans, and C. G. Faber, “Small fiber neuropathy: a common and important clinical disorder,” Journal of the Neurological Sciences, vol. 227, no. 1, pp. 119–130, 2004.
[27]
S. H. Horowitz, “The diagnostic workup of patients with neuropathic pain,” Anesthesiology Clinics, vol. 25, no. 4, pp. 699–708, 2007.
[28]
G. Devigili, V. Tugnoli, P. Penza et al., “The diagnostic criteria for small fibre neuropathy: from symptoms to neuropathology,” Brain, vol. 131, no. 7, pp. 1912–1925, 2008.
[29]
M. M. Backonja, D. Walk, R. R. Edwards et al., “Quantitative sensory testing in measurement of neuropathic pain phenomena and other sensory abnormalities,” The Clinical Journal of Pain, vol. 25, no. 7, pp. 641–647, 2009.
[30]
M. Nebuchennykh, S. L?seth, S. Lindal, and S. I. Mellgren, “The value of skin biopsy with recording of intraepidermal nerve fiber density and quantitative sensory testing in the assessment of small fiber involvement in patients with different causes of polyneuropathy,” Journal of Neurology, vol. 256, no. 7, pp. 1067–1075, 2009.
[31]
D. Walk, N. Sehgal, T. Moeller-Bertram et al., “Quantitative sensory testing and mapping: a review of nonautomated quantitative methods for examination of the patient with neuropathic pain,” The Clinical Journal of Pain, vol. 25, no. 7, pp. 632–640, 2009.
[32]
G. Cavaletti, B. Frigeni, F. Lanzani et al., “Chemotherapy-induced peripheral neurotoxicity assessment: a critical revision of the currently available tools,” European Journal of Cancer, vol. 46, no. 3, pp. 479–494, 2010.
[33]
G. Lauria, S. T. Hsieh, O. Johansson et al., “European Federation of Neurological Societies/Peripheral Nerve Society guideline on the use of skin biopsy in the diagnosis of small fiber neuropathy. Report of a joint task force of the European Federation of Neurological Societies and the Peripheral Nerve Society,” Journal of the Peripheral Nervous System, vol. 15, no. 2, pp. 79–92, 2010.
[34]
A. Hlubocky, K. Wellik, M. A. Ross et al., “Skin biopsy for diagnosis of small fiber neuropathy: a critically appraised topic,” Neurologist, vol. 16, no. 1, pp. 61–63, 2010.
[35]
G. Lauria, M. Bakkers, C. Schmitz et al., “Intraepidermal nerve fiber density at the distal leg: a worldwide normative reference study,” Journal of the Peripheral Nervous System, vol. 15, no. 3, pp. 202–207, 2010.
[36]
S. I. Mellgren and S. Lindal, “Nerve biopsy—some comments on procedures and indications,” Acta Neurologica Scandinavica, vol. 191, pp. 64–70, 2011.
[37]
S. Mackey, I. Carroll, B. Emir, T. K. Murphy, E. Whalen, and L. Dumenci, “Sensory pain qualities in neuropathic pain,” Journal of Pain, vol. 13, pp. 58–63, 2012.
[38]
N. Authier, J. P. Gillet, J. Fialip, A. Eschalier, and F. Coudore, “Description of a short-term Taxol-induced nociceptive neuropathy in rats,” Brain Research, vol. 887, no. 2, pp. 239–249, 2000.
[39]
R. Baron, “Peripheral neuropathic pain: from mechanisms to symptoms,” Clinical Journal of Pain, vol. 16, no. 2, pp. S12–S20, 2000.
[40]
L. Gagliese and R. Melzack, “Age differences in nociception and pain behaviours in the rat,” Neuroscience and Biobehavioral Reviews, vol. 24, no. 8, pp. 843–854, 2000.
[41]
A. S. C. Rice, D. Cimino-Brown, J. C. Eisenach et al., “Animal models and the prediction of efficacy in clinical trials of analgesic drugs: a critical appraisal and call for uniform reporting standards,” Pain, vol. 139, no. 2, pp. 243–247, 2008.
[42]
K. A. Sullivan, S. I. Lentz, J. L. Roberts, and E. L. Feldman, “Criteria for creating and assessing mouse models of diabetic neuropathy,” Current Drug Targets, vol. 9, no. 1, pp. 3–13, 2008.
[43]
N. Authier, D. Balayssac, F. Marchand et al., “Animal models of chemotherapy-evoked painful peripheral neuropathies,” Neurotherapeutics, vol. 6, no. 4, pp. 620–629, 2009.
[44]
I. G. Obrosova, “Diabetic painful and insensate neuropathy: pathogenesis and potential treatments,” Neurotherapeutics, vol. 6, no. 4, pp. 638–647, 2009.
[45]
J. Sandkühler, “Models and mechanisms of hyperalgesia and allodynia,” Physiological Reviews, vol. 89, pp. 707–758, 2009.
[46]
A. I. Basbaum, M. Gautron, F. Jazat, M. Mayes, and G. Guilbaud, “The spectrum of fiber loss in a model of neuropathic pain in the rat: an electron microscopic study,” Pain, vol. 47, no. 3, pp. 359–367, 1991.
[47]
K. Sugimoto and S. Yagihashi, “Peripheral nerve pathology in rats with streptozotocin-induced insulinoma,” Acta Neuropathologica, vol. 91, no. 6, pp. 616–623, 1996.
[48]
G. Lauria, R. Lombardi, M. Borgna et al., “Intraepidermal nerve fiber density in rat foot pad: neuropathologic- neurophysiologic correlation,” Journal of the Peripheral Nervous System, vol. 10, no. 2, pp. 202–208, 2005.
[49]
C. Siau, W. Xiao, and G. J. Bennett, “Paclitaxel- and vincristine-evoked painful peripheral neuropathies: loss of epidermal innervation and activation of Langerhans cells,” Experimental Neurology, vol. 201, no. 2, pp. 507–514, 2006.
[50]
K. K. Beiswenger, N. A. Calcutt, and A. P. Mizisin, “Epidermal nerve fiber quantification in the assessment of diabetic neuropathy,” Acta Histochemica, vol. 110, no. 5, pp. 351–362, 2008.
[51]
H. T. Cheng, J. R. Dauch, J. M. Hayes, B. M. Yanik, and E. L. Feldman, “Nerve growth factor/p38 signaling increases intraepidermal nerve fiber densities in painful neuropathy of type 2 diabetes,” Neurobiology of Disease, vol. 45, no. 1, pp. 280–287, 2012.
[52]
A. H?ke, “Animal models of peripheral neuropathies,” Neurotherapeutics, vol. 9, no. 2, pp. 262–269, 2012.
[53]
H. C. Shin, Y. L. Lee, H. Y. Kwon, H. J. Park, and S. A. Raymond, “Activity-dependent variations in conduction velocity of C fibers of rat sciatic nerve,” Neuroscience Research, vol. 19, no. 4, pp. 427–431, 1994.
[54]
M. D. Gee, B. Lynn, and B. Cotsell, “Activity-dependent slowing of conduction velocity provides a method for identifying different functional classes of C-fibre in the rat saphenous nerve,” Neuroscience, vol. 73, no. 3, pp. 667–675, 1996.
[55]
H. Bostock, M. Campero, J. Serra, and J. Ochoa, “Velocity recovery cycles of C fibres innervating human skin,” Journal of Physiology, vol. 553, no. 2, pp. 649–663, 2003.
[56]
X. Chen and J. D. Levine, “Altered temporal pattern of mechanically evoked C-fiber activity in a model of diabetic neuropathy in the rat,” Neuroscience, vol. 121, no. 4, pp. 1007–1015, 2003.
[57]
Y. B. Peng, M. Ringkamp, R. A. Meyer, and J. N. Campbell, “Fatigue and paradoxical enhancement of heat response in C-fiber nociceptors from cross-modal excitation,” Journal of Neuroscience, vol. 23, no. 11, pp. 4766–4774, 2003.
[58]
K. D. Tanner, D. B. Reichling, R. W. Gear, S. M. Paul, and J. D. Levine, “Altered temporal pattern of evoked afferent activity in a rat model of vincristine-induced painful peripheral neuropathy,” Neuroscience, vol. 118, no. 3, pp. 809–817, 2003.
[59]
L. Djouhri, S. Koutsikou, X. Fang, S. McMullan, and S. N. Lawson, “Spontaneous pain, both neuropathic and inflammatory, is related to frequency of spontaneous firing in intact C-fiber nociceptors,” Journal of Neuroscience, vol. 26, no. 4, pp. 1281–1292, 2006.
[60]
X. Chen and J. D. Levine, “Mechanically-evoked C-fiber activity in painful alcohol and AIDS therapy neuropathy in the rat,” Molecular Pain, vol. 3, article 5, 2007.
[61]
B. Y. Li, B. Feng, H. Y. Tsu, and J. H. Schild, “Unmyelinated visceral afferents exhibit frequency dependent action potential broadening while myelinated visceral afferents do not,” Neuroscience Letters, vol. 421, no. 1, pp. 62–66, 2007.
[62]
W. H. Xiao and G. J. Bennett, “Chemotherapy-evoked neuropathic pain: abnormal spontaneous discharge in A-fiber and C-fiber primary afferent neurons and its suppression by acetyl-l-carnitine,” Pain, vol. 135, no. 3, pp. 262–270, 2008.
[63]
T. Taguchi, H. Ota, T. Matsuda, S. Murase, and K. Mizumura, “Cutaneous C-fiber nociceptor responses and nociceptive behaviors in aged Sprague-Dawley rats,” Pain, vol. 151, no. 3, pp. 771–782, 2010.
[64]
M. Schmelz, “Translating nociceptive processing into human pain models,” Experimental Brain Research, vol. 196, no. 1, pp. 173–178, 2009.
[65]
J. Serra, R. Solà, C. Quiles et al., “C-nociceptors sensitized to cold in a patient with small-fiber neuropathy and cold allodynia,” Pain, vol. 147, no. 1–3, pp. 46–53, 2009.
[66]
K. ?rstavik and E. J?rum, “Microneurographic findings of relevance to pain in patients with erythromelalgia and patients with diabetic neuropathy,” Neuroscience Letters, vol. 470, no. 3, pp. 180–184, 2010.
[67]
R. Schmidt, I. P. Kleggetveit, B. Namer Hel?s T et al., “Double spikes to single electrical stimulation correlates to spontaneous activity of nociceptors in painful neuropathy patients,” Pain, vol. 153, pp. 391–398, 2012.
[68]
J. Serra, H. Bostock, and X. Navarro, “Microneurography in rats: a minimally invasive method to record single C-fiber action potentials from peripheral nerves in vivo,” Neuroscience Letters, vol. 470, no. 3, pp. 168–174, 2010.
[69]
J. Serra, H. Bostock, R. Solà et al., “Microneurographic identification of spontaneous activity in C-nociceptors in neuropathic pain states in humans and rats,” Pain, vol. 153, no. 1, pp. 42–55, 2012.
[70]
A. P. Gokin, B. Philip, and G. R. Strichartz, “Preferential block of small myelinated sensory and motor fibers by lidocaine: in vivo electrophysiology in the rat sciatic nerve,” Anesthesiology, vol. 95, no. 6, pp. 1441–1454, 2001.
[71]
E. G. Zotova, G. J. Christ, W. Zhao, M. Tar, S. D. Kuppam, and J. C. Arezzo, “Effects of fidarestat, an aldose reductase inhibitor, on nerve conduction velocity and bladder function in streptozotocin-treated female rats,” Journal of Diabetes and Its Complications, vol. 21, no. 3, pp. 187–195, 2007.
[72]
A. D. Legatt, J. Arezzo, and H. G. Vaughan Jr., “Averaged multiple unit activity as an estimate of phasic changes in local neuronal activity: effects of volume-conducted potentials,” Journal of Neuroscience Methods, vol. 2, no. 2, pp. 203–217, 1980.
[73]
J. C. Arezzo, H. G. Vaughan Jr., M. A. Kraut, M. Steinschneider, and A. D. Legatt, “Intracranial generators of event related potentials in the monkey,” in Frontiers of Clinical Neuroscience. Evoked Potentials, R. Q. Cracco and I. Bodis Wollner, Eds., vol. 3, pp. 174–189, Alan R. Liss, New York, NY, USA, 1986.
[74]
M. Steinschneider, Y. I. Fishman, and J. C. Arezzo, “Spectrotemporal analysis of evoked and induced electroencephalographic responses in primary auditory cortex (A1) of the awake monkey,” Cerebral Cortex, vol. 18, no. 3, pp. 610–625, 2008.
[75]
H. H. Schaumburg, E. Zotova, B. Cannella et al., “Structural and functional investigations of the murine cavernosal nerve: a model system for serial spatio-temporal study of autonomic neuropathy,” British Journal of Urology International, vol. 99, no. 4, pp. 916–924, 2007.
[76]
E. G. Zotova, H. H. Schaumburg, C. S. Raine et al., “Effects of hyperglycemia on rat cavernous nerve axons: a functional and ultrastructural study,” Experimental Neurology, vol. 213, no. 2, pp. 439–447, 2008.
[77]
G. R. Lewin and S. B. McMahon, “Physiological properties of primary sensory neurons appropriately and inappropriately innervating skin in the adult rat,” Journal of Neurophysiology, vol. 66, no. 4, pp. 1205–1217, 1991.
[78]
F. Li, O. I. Abatan, H. Kim et al., “Taurine reverses neurological and neurovascular deficits in Zucker diabetic fatty rats,” Neurobiology of Disease, vol. 22, no. 3, pp. 669–676, 2006.
[79]
H. H. Schaumburg, E. Zotova, C. S. Raine, M. Tar, and J. Arezzo, “The rat caudal nerves: a model for experimental neuropathies,” Journal of the Peripheral Nervous System, vol. 15, no. 2, pp. 128–139, 2010.
[80]
B. Povlsen, N. Stankovic, P. Danielsson, and C. Hildebrand, “Fiber composition of the lateral plantar and superficial peroneal nerves in the rat foot,” Anatomy and Embryology, vol. 189, no. 5, pp. 393–399, 1994.
[81]
J. Serra, M. Campero, J. Ochoa, and H. Bostock, “Activity-dependent slowing of conduction differentiates functional subtypes of C fibres innervating human skin,” Journal of Physiology, vol. 515, no. 3, pp. 799–811, 1999.
[82]
B. Namer, B. Barta, K. ?rstavik et al., “Microneurographic assessment of C-fibre function in aged healthy subjects,” Journal of Physiology, vol. 587, no. 2, pp. 419–428, 2009.
[83]
M. Schmelz and R. Schmidt, “Microneurographic single-unit recordings to assess receptive properties of afferent human C-fibers,” Neuroscience Letters, vol. 470, no. 3, pp. 158–161, 2010.
[84]
M. Ringkamp, L. M. Johanek, J. Borzan et al., “Conduction properties distinguish unmyelinated sympathetic efferent fibers and unmyelinated primary afferent fibers in the monkey,” PLoS ONE, vol. 5, no. 2, article e9076, 2010.
[85]
M. J. Caterina and D. Julius, “The vanilloid receptor: a molecular gateway to the pain pathway,” Annual Review of Neuroscience, vol. 24, pp. 487–517, 2001.
[86]
S. B. McMahon, G. Lewin, and S. R. Bloom, “The consequences of long-term topical capsaicin application in the rat,” Pain, vol. 44, no. 3, pp. 301–310, 1991.
[87]
D. A. Simone and J. Ochoa, “Early and late effects of prolonged topical capsaicin on cutaneous sensibility and neurogenic vasodilatation in humans,” Pain, vol. 47, no. 3, pp. 285–294, 1991.
[88]
M. Nolano, D. A. Simone, G. Wendelschafer-Crabb, T. Johnson, E. Hazen, and W. R. Kennedy, “Topical capsaicin in humans: parallel loss of epidermal nerve fibers and pain sensation,” Pain, vol. 81, no. 1-2, pp. 135–145, 1999.
[89]
N. Khalili, G. Wendelschafer-Crabb, W. R. Kennedy, and D. A. Simone, “Influence of thermode size for detecting heat pain dysfunction in a capsaicin model of epidermal nerve fiber loss,” Pain, vol. 91, no. 3, pp. 241–250, 2001.
[90]
A. B. Malmberg, A. P. Mizisin, N. A. Calcutt, T. von Stein, W. R. Robbins, and K. R. Bley, “Reduced heat sensitivity and epidermal nerve fiber immunostaining following single applications of a high-concentration capsaicin patch,” Pain, vol. 111, no. 3, pp. 360–367, 2004.
[91]
M. Polydefkis, P. Hauer, S. Sheth, M. Sirdofsky, J. W. Griffin, and J. C. McArthur, “The time course of epidermal nerve fibre regeneration: studies in normal controls and in people with diabetes, with and without neuropathy,” Brain, vol. 127, no. 7, pp. 1606–1615, 2004.
[92]
H. E. Torebj?rk and R. G. Hallin, “Responses in human A and C fibres to repeated electrical intradermal stimulation,” Journal of Neurology, Neurosurgery & Psychiatry, vol. 37, pp. 653–664, 1974.
[93]
H. J. Braune, “Testing of the refractory period in sensory nerve fibres is the most sensitive method to assess beginning polyneuropathy in diabetics,” Electromyography and Clinical Neurophysiology, vol. 39, no. 6, pp. 355–359, 1999.
[94]
K. ?rstavik, B. Namer, R. Schmidt et al., “Abnormal function of C-fibers in patients with diabetic neuropathy,” Journal of Neuroscience, vol. 26, no. 44, pp. 11287–11294, 2006.
[95]
R. de Col, K. Messlinger, and R. W. Carr, “Conduction velocity is regulated by sodium channel inactivation in unmyelinated axons innervating the rat cranial meninges,” Journal of Physiology, vol. 586, no. 4, pp. 1089–1103, 2008.
[96]
R. de Col, K. Messlinger, and R. W. Carr, “Repetitive activity slows axonal conduction velocity and concomitantly increases mechanical activation threshold in single axons of the rat cranial dura,” The Journal of Physiology, vol. 590, pp. 725–736, 2012.
[97]
Z. R. Zhu, X. W. Tang, W. T. Wang et al., “Conduction failures in rabbit saphenous nerve unmyelinated fibers,” NeuroSignals, vol. 17, no. 3, pp. 181–195, 2009.
[98]
A. George, J. Serra, X. Navarro, and H. Bostock, “Velocity recovery cycles of single C fibres innervating rat skin,” Journal of Physiology, vol. 578, no. 1, pp. 213–232, 2007.
[99]
O. Obreja, M. Ringkamp, B. Namer et al., “Patterns of activity-dependent conduction velocity changes differentiate classes of unmyelinated mechano-insensitive afferents including cold nociceptors, in pig and in human,” Pain, vol. 148, no. 1, pp. 59–69, 2010.
[100]
S. N. Lawson, “Phenotype and function of somatic primary afferent nociceptive neurones with C-, Aδ- or Aα/β-fibres,” Experimental Physiology, vol. 87, no. 2, pp. 239–244, 2002.
[101]
L. Djouhri and S. N. Lawson, “Aβ-fiber nociceptive primary afferent neurons: a review of incidence and properties in relation to other afferent A-fiber neurons in mammals,” Brain Research Reviews, vol. 46, no. 2, pp. 131–145, 2004.