全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Self-Consistent Green Function Method in Nuclear Matter

DOI: 10.1155/2013/415605

Full-Text   Cite this paper   Add to My Lib

Abstract:

Symmetric nuclear matter is studied within the Brueckner-Hartree-Fock (BHF) approach and is extending to the self-consistent Green’s function (SCGF) approach. Both approximations are based on realistic nucleon-nucleon interaction; that is, CD-Bonn potential is chosen. The single-particle energy and the equation of state (EOS) are studied. The Fermi energy at the saturation point fulfills the Hugenholtz-Van Hove theorem. In comparison to the BHF approach, the binding energy is reduced and the EOS is stiffer. Both the SCGF and BHF approaches do not reproduce the correct saturation point. A simple contact interaction should be added to SCGF and BHF approaches to reproduce the empirical saturation point. 1. Introduction The correct treatment of short-range correlations when performing nuclear matter calculations using the basic nucleon-nucleon interaction (NN) is of great importance [1]. One of these correlations has been studied using Brueckner-type resummation of ladder diagrams. This resummation allows to rewrite the ground-state energy of nuclear matter, using as an effective interaction the -matrix, which takes care of the short-range repulsive core in the nucleon-nucleon interaction [2, 3]. Calculations using realistic interactions lead to results, which lie along a line (the Coester line) shifted with respect to the phenomenological saturation point ( , ) [4]. The remaining discrepancy can be attributed to relativistic effects and three-body forces contributions [5]. Self-consistent approaches based on the in-medium -matrix approximation for nuclear matter have been studied [6]. In this way, a spectral function for nucleons in nuclear matter including two-particle correlations is obtained. The ladder diagrams involved in the calculation of the in-medium -matrix include also hole-hole ( ) propagation. The -matrix approximation takes into account some of the higher-order hole line contributions as compared to the -matrix approach. It would be instructive to study the saturation properties of nuclear matter for the self-consistent -matrix approximation with realistic interactions. Strictly speaking, however, the Bethe-Brandow-Petschek theorem [7] only defines the energy variable to be used in the calculation of self-energy or single-particle potential for the hole states. The choice for the propagator of the particle states is not defined on this level of the hole-line expansion and, therefore, has been discussed in a controversial way. The conventional choice has been to ignore self-energy contributions for the particle states completely and

References

[1]  H. Müther and A. Polls, “Two-body correlations in nuclear systems,” Progress in Particle and Nuclear Physics, vol. 45, no. 1, pp. 243–334, 2000.
[2]  K. A. Brueckner and J. L. Gammel, “Properties of nuclear matter,” Physical Review, vol. 109, no. 4, pp. 1023–1039, 1958.
[3]  B. D. Day, “Elements of the Brueckner-Goldstone theory of nuclear matter,” Reviews of Modern Physics, vol. 39, no. 4, pp. 719–744, 1967.
[4]  K. S. A. Hassaneen, H. M. Abo-Elsebaa, E. A. Sultan, and H. M. M. Mansour, “Nuclear binding energy and symmetry energy of nuclear matter with modern nucleon-nucleon potentials,” Annals of Physics, vol. 326, no. 3, pp. 566–577, 2011.
[5]  R. Brockmann and R. Machleidt, “Relativistic nuclear structure. I. Nuclear matter,” Physical Review C, vol. 42, no. 5, pp. 1965–1980.
[6]  T. Frick, K. S. A. Hassaneen, D. Rohe, and H. Müther, “Spectral function at high missing energies and momenta,” Physical Review C, vol. 70, no. 2, Article ID 024309, 5 pages, 2004.
[7]  H. A. Bethe, B. H. Brandow, and A. G. Petschek, “Reference spectrum method for nuclear matter,” Physical Review, vol. 129, no. 1, pp. 225–264, 1963.
[8]  J. P. Jeukenne, A. Lejeune, and C. Mahaux, “Many-body theory of nuclear matter,” Physics Reports, vol. 25, no. 2, pp. 83–174, 1976.
[9]  E. Schiller, H. Müther, and P. Czerski, “Pauli exclusion operator and binding energy of nuclear matter,” Physical Review C, vol. 59, no. 5, pp. 2934–2936, 1999.
[10]  E. Schiller, H. Müther, and P. Czerski, “Erratum: pauli exclusion operator and binding energy of nuclear matter [Physical Review C, 59, 2934 (1999)],” Physical Review C, vol. 60, no. 5, Article ID 059901(E), 1 pages, 1999.
[11]  P. Grangé, J. Cugnon, and A. Lejeune, “Nuclear mean field with correlations at finite temperature,” Nuclear Physics A, vol. 473, no. 3, pp. 365–393, 1987.
[12]  T. Frick, Kh. Gad, H. Müther, and P. Czerski, “Nuclear self-energy and realistic interactions,” Physical Review C, vol. 65, no. 3, Article ID 034321, 13 pages, 2002.
[13]  K. S. A. Hassaneen and H. Müther, “Correlations and spectral functions in asymmetric nuclear matter,” Physical Review C, vol. 70, no. 5, Article ID 054308, 8 pages, 2004.
[14]  N. M. Hugenholz and L. van Hove, “A theorem on the single particle energy in a Fermi gas with interaction,” Physica, vol. 24, no. 1–5, pp. 363–376, 1958.
[15]  Y. Dewulf, W. H. Dickhoff, D. van Neck, E. R. Stoddard, and M. Waroquier, “Saturation of nuclear matter and short-range correlations,” Physical Review Letters, vol. 90, no. 15, Article ID 152501, 4 pages, 2003.
[16]  P. Bo?ek, “One-body properties of nuclear matter with off-shell propagation,” Physical Review C, vol. 65, Article ID 054306, 10 pages, 2002.
[17]  T. Frick and H. Müther, “Self-consistent solution to the nuclear many-body problem at finite temperature,” Physical Review C, vol. 68, no. 3, Article ID 034310, 9 pages, 2003.
[18]  T. Frick, H. Müther, A. Rios, A. Polls, and A. Ramos, “Correlations in hot asymmetric nuclear matter,” Physical Review C, vol. 71, no. 1, Article ID 014313, 8 pages, 2005.
[19]  H. Müther and W. H. Dickhoff, “Pairing properties of nucleonic matter employing dressed nucleons,” Physical Review C, vol. 72, no. 5, Article ID 054313, 11 pages, 2005.
[20]  W. H. Dickhoff and C. Barbieri, “Self-consistent Green's function method for nuclei and nuclear matter,” Progress in Particle and Nuclear Physics, vol. 52, no. 2, pp. 377–496, 2004.
[21]  D. S. Koltun, “Theory of mean removal energies for single particles in nuclei,” Physical Review C, vol. 9, no. 2, pp. 484–497, 1974.
[22]  R. Machleidt, “High-precision, charge-dependent Bonn nucleon-nucleon potential,” Physical Review C, vol. 63, no. 2, Article ID 024001, 32 pages, 2001.
[23]  M. Baldo and A. E. Shaban, “Dependence of the nuclear equation of state on two-body and three-body forces,” Physics Letters B, vol. 661, no. 6, pp. 373–377, 2008.
[24]  H. Müther, M. Prakash, and T. L. Ainsworth, “The nuclear symmetry energy in relativistic Brueckner-Hartree-Fock calculations,” Physics Letters B, vol. 199, no. 4, pp. 469–474, 1987.
[25]  A. Rios, A. Polls, and I. Vida?a, “Hot neutron matter from a self-consistent Green's-functions approach,” Physical Review C, vol. 79, no. 2, Article ID 025802, 13 pages, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133