全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Magnetohydrodynamic Boundary Layer Flow of Nanofluid over an Exponentially Stretching Permeable Sheet

DOI: 10.1155/2014/592536

Full-Text   Cite this paper   Add to My Lib

Abstract:

A mathematical model of the steady boundary layer flow of nanofluid due to an exponentially permeable stretching sheet with external magnetic field is presented. In the model, the effects of Brownian motion and thermophoresis on heat transfer and nanoparticle volume friction are considered. Using shooting technique with fourth-order Runge-Kutta method the transformed equations are solved. The study reveals that the governing parameters, namely, the magnetic parameter, the wall mass transfer parameter, the Prandtl number, the Lewis number, Brownian motion parameter, and thermophoresis parameter, have major effects on the flow field, the heat transfer, and the nanoparticle volume fraction. The magnetic field makes enhancement in temperature and nanoparticle volume fraction, whereas the wall mass transfer through the porous sheet causes reduction of both. For the Brownian motion, the temperature increases and the nanoparticle volume fraction decreases. Heat transfer rate becomes low with increase of Lewis number. For thermophoresis effect, the thermal boundary layer thickness becomes larger. 1. Introduction The term “nanofluid” was proposed by Choi [1], referring to dispersions of nanoparticles in the base fluids such as water, ethylene glycol, and propylene glycol. The thermal conductivity enhancement characteristic of nanofluid was observed by Masuda et al. [2]. Buongiorno [3] discussed the reasons behind the enhancement in heat transfer for nanofluid and he found that Brownian diffusion and thermophoresis are the main causes. Later, Nield and Kuznetsov [4] and Kuznetsov and Nield [5] investigated the natural convective boundary layer flow of a nanofluid employing Buongiorno model. The study of boundary layer flow and heat transfer due to stretching surface has numerous applications in industry and technology, such as in polymer extrusion, drawing of copper wires, artificial fibers, paper production, hot rolling, wire drawing, glass fiber, metal extrusion and metal spinning, and continuous stretching of plastic films. Crane [6] first studied the boundary layer flow due to linearly stretching sheet. Many researchers [7–17] extended the work of Crane, whereas Magyari and Keller [18] considered the boundary layer flow and heat transfer due to an exponentially stretching sheet. The flow and heat transfer over an exponentially stretching surface were investigated by Elbashbeshy [19] taking wall mass suction. Khan and Sanjayanand [20] presented the boundary layer flow of viscoelastic fluid and heat transfer over an exponentially stretching sheet with viscous

References

[1]  S. U. S. Choi, “Enhancing thermal conductivity of fluids with nanoparticles,” in Proceedings of the ASME International Mechanical Engineering Congress and Exposition, vol. 66, pp. 99–105, San Francisco, Calif, USA, November 1995.
[2]  H. Masuda, A. Ebata, K. Teramae, and N. Hishinuma, “Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles,” Netsu Bussei, vol. 7, pp. 227–233, 1993.
[3]  J. Buongiorno, “Convective transport in nanofluids,” Journal of Heat Transfer, vol. 128, no. 3, pp. 240–250, 2006.
[4]  D. A. Nield and A. V. Kuznetsov, “The Cheng-Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid,” International Journal of Heat and Mass Transfer, vol. 52, no. 25-26, pp. 5792–5795, 2009.
[5]  A. V. Kuznetsov and D. A. Nield, “Natural convective boundary-layer flow of a nanofluid past a vertical plate,” International Journal of Thermal Sciences, vol. 49, no. 2, pp. 243–247, 2010.
[6]  L. J. Crane, “Flow past a stretching plate,” Zeitschrift für Angewandte Mathematik und Physik ZAMP, vol. 21, no. 4, pp. 645–647, 1970.
[7]  P. S. Gupta and A. S. Gupta, “Heat and mass transfer on a stretching sheet with suction and blowing,” The Canadian Journal of Chemical Engineering, vol. 55, no. 6, pp. 744–746, 1977.
[8]  B. K. Dutta, P. Roy, and A. S. Gupta, “Temperature field in flow over a stretching sheet with uniform heat flux,” International Communications in Heat and Mass Transfer, vol. 12, no. 1, pp. 89–94, 1985.
[9]  H. I. Andersson and B. S. Dandapat, “Flow of a power-law fluid over a stretching sheet,” Stability and Applied Analysis of Continuous Media, vol. 1, pp. 339–347, 1991.
[10]  R. Cortell, “Viscous flow and heat transfer over a nonlinearly stretching sheet,” Applied Mathematics and Computation, vol. 184, no. 2, pp. 864–873, 2007.
[11]  K. Bhattacharyya and G. C. Layek, “Chemically reactive solute distribution in MHD boundary layer flow over a permeable stretching sheet with suction or blowing,” Chemical Engineering Communications, vol. 197, no. 12, pp. 1527–1540, 2010.
[12]  K. Bhattacharyya, S. Mukhopadhyay, and G. C. Layek, “Slip effects on an unsteady boundary layer stagnation-point flow and heat transfer towards a stretching sheet,” Chinese Physics Letters, vol. 28, no. 9, Article ID 094702, 2011.
[13]  K. Bhattacharyya and G. C. Layek, “Slip effect on diffusion of chemically reactive species in boundary layer flow over a vertical stretching sheet with suction or blowing,” Chemical Engineering Communications, vol. 198, no. 11, pp. 1354–1365, 2011.
[14]  K. Bhattacharyya, “Effects of radiation and heat source/sink on unsteady MHD boundary layer flow and heat transfer over a shrinking sheet with suction/injection,” Frontiers of Chemical Science and Engineering, vol. 5, no. 3, pp. 376–384, 2011.
[15]  K. Bhattacharyya, M. G. Arif, and W. Ali Pramanik, “MHD boundary layer stagnation-point flow and mass transfer over a permeable shrinking sheet with suction/blowing and chemical reaction,” Acta Technica, vol. 57, pp. 1–15, 2012.
[16]  K. Bhattacharyya, S. Mukhopadhyay, and G. C. Layek, “Unsteady MHD boundary layer flow with diffusion and first order chemical reaction over a permeable stretching sheet with suction or blowing,” Chemical Engineering Communications, vol. 200, no. 3, pp. 379–397, 2013.
[17]  K. Bhattacharyya, “Heat transfer in unsteady boundary layer stagnation-point flow towards a shrinking sheet,” Ain Shams Engineering Journal, vol. 4, no. 2, pp. 259–264, 2013.
[18]  E. Magyari and B. Keller, “Heat and mass transfer in the boundary layers on an exponentially stretching continuous surface,” Journal of Physics D, vol. 32, no. 5, pp. 577–585, 1999.
[19]  E. M. A. Elbashbeshy, “Heat transfer over an exponentially stretching continuous surface with suction,” Archives of Mechanics, vol. 53, no. 6, pp. 643–651, 2001.
[20]  S. K. Khan and E. Sanjayanand, “Viscoelastic boundary layer flow and heat transfer over an exponential stretching sheet,” International Journal of Heat and Mass Transfer, vol. 48, no. 8, pp. 1534–1542, 2005.
[21]  M. K. Partha, P. V. S. N. Murthy, and G. P. Rajasekhar, “Effect of viscous dissipation on the mixed convection heat transfer from an exponentially stretching surface,” Heat and Mass Transfer, vol. 41, no. 4, pp. 360–366, 2005.
[22]  A. Ishak, “MHD boundary layer flow due to an exponentially stretching sheet with radiation effect,” Sains Malaysiana, vol. 40, no. 4, pp. 391–395, 2011.
[23]  K. Bhattacharyya, “Boundary layer flow and heat transfer over an exponentially shrinking sheet,” Chinese Physics Letters, vol. 28, no. 7, Article ID 074701, 2011.
[24]  K. Bhattacharyya and I. Pop, “MHD boundary layer flow due to an exponentially shrinking sheet,” Magnetohydrodynamics, vol. 47, pp. 337–344, 2011.
[25]  K. Bhattacharyya and K. Vajravelu, “Stagnation-point flow and heat transfer over an exponentially shrinking sheet,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 7, pp. 2728–2734, 2012.
[26]  N. Bachok, A. Ishak, and I. Pop, “Boundary layer stagnation-point flow and heat transfer over an exponentially stretching/shrinking sheet in a nanofluid,” International Journal of Heat and Mass Transfer, vol. 55, no. 25-26, pp. 8122–8128, 2012.
[27]  W. A. Khan and I. Pop, “Boundary-layer flow of a nanofluid past a stretching sheet,” International Journal of Heat and Mass Transfer, vol. 53, no. 11-12, pp. 2477–2483, 2010.
[28]  O. D. Makinde and A. Aziz, “Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition,” The International Journal of Thermal Sciences, vol. 50, no. 7, pp. 1326–1332, 2011.
[29]  R. Kandasamy, P. Loganathan, and P. Puvi Arasu, “Scaling group transformation for MHD boundary-layer flow of a nanofluid past a vertical stretching surface in the presence of suction/injection,” Nuclear Engineering and Design, vol. 241, no. 6, pp. 2053–2059, 2011.
[30]  M. Mustafa, T. Hayat, I. Pop, S. Asghar, and S. Obaidat, “Stagnation-point flow of a nanofluid towards a stretching sheet,” International Journal of Heat and Mass Transfer, vol. 54, no. 25-26, pp. 5588–5594, 2011.
[31]  P. Rana and R. Bhargava, “Flow and heat transfer of a nanofluid over a nonlinearly stretching sheet: a numerical study,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 1, pp. 212–226, 2012.
[32]  F. M. Hady, F. S. Ibrahim, S. M. Abdel-Gaied, and M. R. Eid, “Radiation effect on viscous flow of a nanofluid and heat transfer over a nonlinearly stretching sheet,” Nanoscale Research Letters, vol. 7, article 229, 2012.
[33]  O. D. Makinde, W. A. Khan, and Z. H. Khan, “Buoyancy effects on MHD stagnation point flow and heat transfer of a nanofluid past a convectively heated stretching/shrinking sheet,” International Journal of Heat and Mass Transfer, vol. 62, pp. 526–533, 2013.
[34]  N. Bachok, A. Ishak, and I. Pop, “Unsteady boundary-layer flow and heat transfer of a nanofluid over a permeable stretching/shrinking sheet,” International Journal of Heat and Mass Transfer, vol. 55, no. 7-8, pp. 2102–2109, 2012.
[35]  S. Nadeem and C. Lee, “Boundary layer flow of nanofluid over an exponentially stretching surface,” Nanoscale Research Letters, vol. 7, article 94, pp. 1–15, 2012.
[36]  K. Bhattacharyya, S. Mukhopadhyay, and G. C. Layek, “MHD boundary layer slip flow and heat transfer over a flat plate,” Chinese Physics Letters, vol. 28, no. 2, Article ID 024701, 2011.
[37]  K. Bhattacharyya, “Dual solutions in unsteady stagnation-point flow over a shrinking sheet,” Chinese Physics Letters, vol. 28, no. 8, Article ID 084702, 2011.
[38]  S. Mukhopadhyay, K. Bhattacharyya, and G. C. Layek, “Steady boundary layer flow and heat transfer over a porous moving plate in presence of thermal radiation,” International Journal of Heat and Mass Transfer, vol. 54, no. 13-14, pp. 2751–2757, 2011.
[39]  K. Bhattacharyya, “Boundary layer flow with diffusion and first-order chemical reaction over a porous flat plate subject to suction/injection and with variable wall concentration,” Chemical Engineering Research Bulletin, vol. 15, no. 1, pp. 6–11, 2011.
[40]  K. Bhattacharyya, “Effects of heat source/sink on MHD flow and heat transfer over a shrinking sheet with mass suction,” Chemical Engineering Research Bulletin, vol. 15, no. 1, pp. 12–17, 2011.
[41]  K. Bhattacharyya, S. Mukhopadhyay, G. C. Layek, and I. Pop, “Effects of thermal radiation on micropolar fluid flow and heat transfer over a porous shrinking sheet,” International Journal of Heat and Mass Transfer, vol. 55, no. 11-12, pp. 2945–2952, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133