Parkinson's disease is a debilitating neurodegenerative disorder, and its molecular etiopathogenesis remains poorly understood. The discovery of monogenic forms has significantly advanced our understanding of the molecular mechanisms underlying PD, as it allows generation of cellular and animal models carrying the mutant gene to define pathological pathways. Mutations in leucine-rich repeat kinase 2 (LRRK2) cause dominantly inherited PD, and variations increase risk, indicating that LRRK2 is an important player in both genetic and sporadic forms of the disease. G2019S, the most prominent pathogenic mutation, maps to the kinase domain and enhances enzymatic activity of LRRK2, which in turn seems to correlate with cytotoxicity. Since kinases are druggable targets, this has raised great hopes that disease-modifying therapies may be developed around modifying LRRK2 enzymatic activity. Apart from cytotoxicity, changes in autophagy have been consistently reported in the context of G2019S mutant LRRK2. Here, we will discuss current knowledge about mechanism(s) by which mutant LRRK2 may regulate autophagy, which highlights additional putative therapeutic targets. 1. Introduction Parkinson’s disease (PD) is a common neurodegenerative disorder with symptoms including tremor, rigidity, and postural instability [1]. Autosomal-dominant mutations in leucine-rich repeat kinase 2 (LRRK2) comprise the most common monogenic form of PD [2–5]. LRRK2-associated PD is symptomatically and neurochemically largely indistinguishable from sporadic PD cases [6], even though the reported pleomorphic pathology of mutant LRRK2 carriers differs from the rather classical α-synuclein pathology associated with sporadic PD. Variations in LRRK2 have further been reported to increase risk for sporadic PD [7–9], which implicates LRRK2 in both sporadic and familial forms of the disease. The big advantage of studying the function of a mutated gene product as compared to a sporadic disease is that one can generate cellular and animal models carrying the mutant gene to define pathological pathways. In conjunction with the described enzymatic activity of LRRK2 which may be targeted by select kinase inhibitors [10, 11], this has propelled the protein into the limelight of PD research worldwide. However, to develop disease-modifying or neuroprotective therapies around LRRK2, a clear understanding of its normal and pathological function(s) is required. A link between LRRK2 and aberrant macroautophagy has been consistently observed, and here we review our current knowledge of LRRK2’s role in
References
[1]
G. Halliday, A. Lees, and M. Stern, “Milestones in Parkinson's disease-Clinical and pathologic features,” Movement Disorders, vol. 26, no. 6, pp. 1015–1021, 2011.
[2]
A. Zimprich, S. Biskup, P. Leitner et al., “Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology,” Neuron, vol. 44, no. 4, pp. 601–607, 2004.
[3]
C. Paisán-Ruíz, S. Jain, E. W. Evans et al., “Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease,” Neuron, vol. 44, no. 4, pp. 595–600, 2004.
[4]
M. J. Farrer, “Genetics of Parkinson disease: paradigm shifts and future prospects,” Nature Reviews Genetics, vol. 7, no. 4, pp. 306–318, 2006.
[5]
J. Hardy, “Genetic analysis of pathways to parkinson disease,” Neuron, vol. 68, no. 2, pp. 201–206, 2010.
[6]
K. Haugarvoll and Z. K. Wszolek, “Clinical features of LRRK2 parkinsonism,” Parkinsonism and Related Disorders, vol. 15, no. 3, pp. S205–S208, 2009.
[7]
W. Satake, Y. Nakabayashi, I. Mizuta et al., “Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson's disease,” Nature Genetics, vol. 41, no. 12, pp. 1303–1307, 2009.
[8]
J. Simón-Sánchez, C. Schulte, J. M. Bras et al., “Genome-wide association study reveals genetic risk underlying Parkinson's disease,” Nature Genetics, vol. 41, no. 12, pp. 1308–1312, 2009.
[9]
M. A. Nalls, V. Plagnol, D. G. Hernandez et al., “Imputation of sequence variants for identification of genetic risks for Parkinson's disease: a meta-analysis of genome-wide association studies,” The Lancet, vol. 377, no. 9766, pp. 641–649, 2011.
[10]
M. R. Cookson, W. Dauer, T. Dawson, E. A. Fon, M. Guo, and J. Shen, “The roles of kinases in familial Parkinson's disease,” Journal of Neuroscience, vol. 27, no. 44, pp. 11865–11868, 2007.
[11]
I. N. Rudenko, R. Chia, and M. R. Cookson, “Is inhibition of kinase activity the only therapeutic strategy for LRRK2-associated Parkinson's disease?” BMC Medicine, vol. 10, article 20, 2012.
[12]
L. Bosgraaf and P. J. M. Van Haastert, “Roc, a Ras/GTPase domain in complex proteins,” Biochimica et Biophysica Acta, vol. 1643, no. 1–3, pp. 5–10, 2003.
[13]
S. Biskup and A. B. West, “Zeroing in on LRRK2-linked pathogenic mechanisms in Parkinson's disease,” Biochimica et Biophysica Acta, vol. 1792, no. 7, pp. 625–633, 2009.
[14]
E. Greggio and M. R. Cookson, “Leucine-rich repeat kinase 2 mutations and Parkinson's disease: three questions,” ASN Neuro, vol. 1, no. 1, Article ID e00002, 2009.
[15]
I. N. Rudenko, A. Kaganovich, D. N. Hauser, et al., “The G2385R variant of leucine-rich repeat kinase 2 associated with Parkinson's disease is a partial loss-of-function mutation,” Biochemical Journal, vol. 446, no. 1, pp. 99–111, 2012.
[16]
L. Guo, P. N. Gandhi, W. Wang, R. B. Petersen, A. L. Wilson-Delfosse, and S. G. Chen, “The Parkinson's disease-associated protein, leucine-rich repeat kinase 2 (LRRK2), is an authentic GTPase thatstimulates kinase activity,” Experimental Cell Research, vol. 313, no. 16, pp. 3658–3670, 2007.
[17]
P. A. Lewis, E. Greggio, A. Beilina, S. Jain, A. Baker, and M. R. Cookson, “The R1441C mutation of LRRK2 disrupts GTP hydrolysis,” Biochemical and Biophysical Research Communications, vol. 357, no. 3, pp. 668–671, 2007.
[18]
D. C. Berwick and K. Harvey, “LRRK2 signaling pathways: the key to unlocking neurodegeneration?” Trends in Cell Biology, vol. 21, no. 5, pp. 257–265, 2011.
[19]
P. A. Lewis and C. Manzoni, “LRRK2 and human disease: a complicated question or a question of complexes?” Science Signaling, vol. 5, no. 207, article 2, 2012.
[20]
E. Greggio, I. Zambrano, A. Kaganovich et al., “The Parkinson disease-associated leucine-rich repeat kinase 2 (LRRK2) is a dimer that undergoes intramolecular autophosphorylation,” Journal of Biological Chemistry, vol. 283, no. 24, pp. 16906–16914, 2008.
[21]
J. Deng, P. A. Lewis, E. Greggio, E. Sluch, A. Beilina, and M. R. Cookson, “Structure of the ROC domain from the Parkinson's disease-associated leucine-rich repeat kinase 2 reveals a dimeric GTPase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 5, pp. 1499–1504, 2008.
[22]
S. Sen, P. J. Webber, and A. B. West, “Dependence of leucine-rich repeat kinase 2 (LRRK2) kinase activity on dimerization,” Journal of Biological Chemistry, vol. 284, no. 52, pp. 36346–36356, 2009.
[23]
Z. Berger, K. A. Smith, and M. J. Lavoie, “Membrane localization of LRRK2 is associated with increased formation of the highly active lrrk2 dimer and changes in its phosphorylation,” Biochemistry, vol. 49, no. 26, pp. 5511–5523, 2010.
[24]
G. Ito and T. Iwatsubo, “Re-examination of the dimerization state of leucine-rich repeat kinase 2: predominance of the monomeric form,” Biochemical Journal, vol. 441, pp. 987–994, 2012.
[25]
J. Alegre-Abarrategui, H. Christian, M. M. P. Lufino et al., “LRRK2 regulates autophagic activity and localizes to specific membrane microdomains in a novel human genomic reporter cellular model,” Human Molecular Genetics, vol. 18, no. 21, pp. 4022–4034, 2009.
[26]
S. Biskup, D. J. Moore, F. Celsi et al., “Localization of LRRK2 to membranous and vesicular structures in mammalian brain,” Annals of Neurology, vol. 60, no. 5, pp. 557–569, 2006.
[27]
S. Higashi, D. J. Moore, R. Yamamoto et al., “Abnormal localization of leucine-rich repeat kinase 2 to the endosomal-lysosomal compartment in lewy body disease,” Journal of Neuropathology and Experimental Neurology, vol. 68, no. 9, pp. 994–1005, 2009.
[28]
E. Greggio, S. Jain, A. Kingsbury et al., “Kinase activity is required for the toxic effects of mutant LRRK2/dardarin,” Neurobiology of Disease, vol. 23, no. 2, pp. 329–341, 2006.
[29]
W. W. Smith, Z. Pei, H. Jiang, V. L. Dawson, T. M. Dawson, and C. A. Ross, “Kinase activity of mutant LRRK2 mediates neuronal toxicity,” Nature Neuroscience, vol. 9, no. 10, pp. 1231–1233, 2006.
[30]
A. B. West, D. J. Moore, C. Choi et al., “Parkinson's disease-associated mutations in LRRK2 link enhanced GTP-binding and kinase activities to neuronal toxicity,” Human Molecular Genetics, vol. 16, no. 2, pp. 223–232, 2007.
[31]
C. Laccarino, C. Crosio, C. Vitale, G. Sanna, M. T. Carrì, and P. Barone, “Apoptotic mechanisms in mutant LRRK2-mediated cell death,” Human Molecular Genetics, vol. 16, no. 11, pp. 1319–1326, 2007.
[32]
B. D. Lee, J. H. Shin, J. Vankampen et al., “Inhibitors of leucine-rich repeat kinase-2 protect against models of Parkinson's disease,” Nature Medicine, vol. 16, no. 9, pp. 998–1000, 2010.
[33]
J. Dusonchet, O. Kochubey, K. Stafa et al., “A rat model of progressive nigral neurodegeneration induced by the Parkinson's disease-associated G2019S mutation in LRRK2,” Journal of Neuroscience, vol. 31, no. 3, pp. 907–912, 2011.
[34]
D. MacLeod, J. Dowman, R. Hammond, T. Leete, K. Inoue, and A. Abeliovich, “The familial Parkinsonism gene LRRK2 regulates neurite process morphology,” Neuron, vol. 52, no. 4, pp. 587–593, 2006.
[35]
E. D. Plowey, S. J. Cherra, Y. J. Liu, and C. T. Chu, “Role of autophagy in G2019S-LRRK2-associated neurite shortening in differentiated SH-SY5Y cells,” Journal of Neurochemistry, vol. 105, no. 3, pp. 1048–1056, 2008.
[36]
J. S?mann, J. Hegermann, E. von Gromoff, S. Eimer, R. Baumeister, and E. Schmidt, “Caenorhabditits elegans LRK-1 and PINK-1 act antagonistically in stress response and neurite outgrowth,” Journal of Biological Chemistry, vol. 284, no. 24, pp. 16482–16491, 2009.
[37]
C. H. Lin, P. I. Tsai, R. M. Wu, and C. T. Chien, “LRRK2 G2019S mutation induces dendrite degeneration through mislocalization and phosphorylation of tau by recruiting autoactivated GSK3β,” Journal of Neuroscience, vol. 30, no. 39, pp. 13138–13149, 2010.
[38]
B. Winner, H. L. Melrose, C. Zhao et al., “Adult neurogenesis and neurite outgrowth are impaired in LRRK2 G2019S mice,” Neurobiology of Disease, vol. 41, no. 3, pp. 706–716, 2011.
[39]
D. Chan, A. Citro, J. M. Cordy, G. C. Shen, and B. Wolozin, “Rac1 protein rescues neurite retraction caused by G2019s leucine-rich repeat kinase 2 (LRRK2),” Journal of Biological Chemistry, vol. 286, no. 18, pp. 16140–16149, 2011.
[40]
D. Ramonet, J. P. L. Daher, B. M. Lin et al., “Dopaminergic neuronal loss, reduced neurite complexity and autophagic abnormalities in transgenic mice expressing G2019S mutant LRRK2,” PLoS ONE, vol. 6, no. 4, Article ID e18568, 2011.
[41]
K. Stafa, A. Trancikova, P. J. Webber, et al., “GTPase activity and neuronal toxicity of Parkinson's disease-associated LRRK2 is regulated by ArfGAP1,” PLoS Genetics, vol. 8, Article ID e1002526, 2012.
[42]
A. Sánchez-Danés, Y. Richaud-Patin, and I. Carballo-Carbajal, “Disease-specific phenotypes in dopamine neurons from human iPS-based models of genetic and sporadic Parkinson's disease,” EMBO Molecular Medicine, vol. 4, pp. 380–395, 2012.
[43]
C. T. Chu, E. D. Plowey, R. K. Dagda, R. W. Hickey, S. J. Cherra, and R. S. B. Clark, “Autophagy in neurite injury and neurodegeneration. In vitro and in vivo models,” Methods in Enzymology, vol. 453, pp. 217–249, 2009.
[44]
F. M. Menzies, K. Moreau, and D. C. Rubinsztein, “Protein misfolding disorders and macroautophagy,” Current Opinion in Cell Biology, vol. 23, no. 2, pp. 190–197, 2011.
[45]
E. Wong and A. M. Cuervo, “Autophagy gone awry in neurodegenerative diseases,” Nature Neuroscience, vol. 13, no. 7, pp. 805–811, 2010.
[46]
P. Anglade, S. Vyas, F. Javoy-Agid, et al., “Apoptosis and autophagy in nigral neurons of patients with Parkinson's disease,” Histology and Histopathology, vol. 12, no. 1, pp. 25–31, 1997.
[47]
Z. Yang and D. J. Klionsky, “Eaten alive: a history of macroautophagy,” Nature Cell Biology, vol. 12, no. 9, pp. 814–822, 2010.
[48]
P. Codogno, M. Mehrpour, and T. Proikas-Cezanne, “Canonical and non-canonical autophagy: variations on a common theme of self-eating?” Nature Reviews Molecular Cell Biology, vol. 13, pp. 7–12, 2012.
[49]
J. P. Luzio, S. R. Gray, and N. A. Bright, “Endosome-lysosome fusion,” Biochemical Society Transactions, vol. 38, no. 6, pp. 1413–1416, 2010.
[50]
Y. Tong, H. Yamaguchi, E. Giaime et al., “Loss of leucine-rich repeat kinase 2 causes impairment of protein degradation pathways, accumulation of α-synuclein, and apoptotic cell death in aged mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 21, pp. 9879–9884, 2010.
[51]
Y. Tong, E. Giaime, and H. Yamaguchi, “Loss of leucine-rich repeat kinase 2 causes age-dependent bi-phasic alterations of the autophagy pathway,” Molecular Neurodegeneration, vol. 7, article 2, 2012.
[52]
M. C. Herzig, C. Kolly, E. Persohn, et al., “LRRK2 protein levels are determined by kinase function and are crucial for kidney and lung homeostasis in mice,” Human Molecular Genetics, vol. 20, pp. 4209–4223, 2011.
[53]
D. J. Klionsky, H. Abeliovich, P. Agostinis, et al., “Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes,” Autophagy, vol. 4, pp. 151–175, 2008.
[54]
P. Gómez-Suaga, B. Luzón-Toro, D. Churamani, et al., “Leucine-rich repeat kinase 2 regulates autophagy through a calcium-dependent pathway involving NAADP,” Human Molecular Genetics, vol. 21, pp. 511–525, 2012.
[55]
P. Gómez-Suaga and S. Hilfiker, “LRRK2 as a modulator of lysosomal calcium homeostasis with downstream effects on autophagy,” Autophagy, vol. 8, pp. 692–693, 2012.
[56]
M. Westerlund, A. C. Belin, A. Anvret, P. Bickford, L. Olson, and D. Galter, “Developmental regulation of leucine-rich repeat kinase 1 and 2 expression in the brain and other rodent and human organs: implications for Parkinson's disease,” Neuroscience, vol. 152, no. 2, pp. 429–436, 2008.
[57]
S. Biskup, D. J. Moore, A. Rea et al., “Dynamic and redundant regulation of LRRK2 and LRRK1 expression,” BMC Neuroscience, vol. 8, article no. 102, 2007.
[58]
J. C. Dachsel, K. Nishioka, C. Vilari?o-Güell et al., “Heterodimerization of Lrrk1-Lrrk2: implications for LRRK2-associated Parkinson disease,” Mechanisms of Ageing and Development, vol. 131, no. 3, pp. 210–214, 2010.
[59]
C. L. Klein, G. Rovelli, W. Springer, C. Schall, T. Gasser, and P. J. Kahle, “Homo- and heterodimerization of ROCO kinases: LRRK2 kinase inhibition by the LRRK2 ROCO fragment,” Journal of Neurochemistry, vol. 111, no. 3, pp. 703–715, 2009.
[60]
H. Hanafusa, K. Ishikawa, S. Kedashiro et al., “Leucine-rich repeat kinase LRRK1 regulates endosomal trafficking of the EGF receptor,” Nature Communications, vol. 2, no. 1, p. 158, 2011.
[61]
K. Ishikawa, A. Nara, K. Matsumoto, et al., “EGFR-dependent phosphorylation of leucine-rich repeat kinase LRRK1 is important for proper endosomal trafficking of EGFR,” Molecular Biology of the Cell, vol. 23, pp. 1294–1306, 2012.
[62]
J. M. Bravo-San Pedro, M. Niso-Santano, R. Rómez-Sánchez, et al., “The LRRK2 G2019S mutant exacerbates basal autophagy through activation of the MEK/ERK pathway,” Cellular Molecular Life Sciences. In press.
[63]
M. Hakimi, T. Selvanantham, E. Swinton et al., “Parkinson's disease-linked LRRK2 is expressed in circulating and tissue immune cells and upregulated following recognition of microbial structures,” Journal of Neural Transmission, vol. 118, no. 5, pp. 795–808, 2011.
[64]
A. Orsi, H. E. J. Polson, and S. A. Tooze, “Membrane trafficking events that partake in autophagy,” Current Opinion in Cell Biology, vol. 22, no. 2, pp. 150–156, 2010.
[65]
C. M. Fader and M. I. Colombo, “Autophagy and multivesicular bodies: two closely related partners,” Cell Death and Differentiation, vol. 16, no. 1, pp. 70–78, 2009.
[66]
N. Shin, H. Jeong, J. Kwon et al., “LRRK2 regulates synaptic vesicle endocytosis,” Experimental Cell Research, vol. 314, no. 10, pp. 2055–2065, 2008.
[67]
Y. Xiong, C. E. Coombes, A. Kilaru et al., “GTPase activity plays a key role in the pathobiology of LRRK2,” PLoS Genetics, vol. 6, no. 4, Article ID e1000902, 2010.
[68]
G. Piccoli, S. B. Condliffe, M. Bauer et al., “LRRK2 controls synaptic vesicle storage and mobilization within the recycling pool,” Journal of Neuroscience, vol. 31, no. 6, pp. 2225–2237, 2011.
[69]
C. Bucci, R. G. Parton, I. H. Mather et al., “The small GTPase rab5 functions as a regulatory factor in the early endocytic pathway,” Cell, vol. 70, no. 5, pp. 715–728, 1992.
[70]
B. Ravikumar, S. Imarisio, S. Sarkar, C. J. O'Kane, and D. C. Rubinsztein, “Rab5 modulates aggregation and toxicity of mutant huntingtin through macroautophagy in cell and fly models of Huntington disease,” Journal of Cell Science, vol. 121, no. 10, pp. 1649–1660, 2008.
[71]
H. W. Platta and H. Stenmark, “Endocytosis and signaling,” Current Opinion in Cell Biology, vol. 23, no. 4, pp. 393–403, 2011.
[72]
I. G. Ganley, P. M. Wong, N. Gammoh, and X. Jiang, “Distinct autophagosomal-lysosomal fusion mechanism revealed by thapsigargin-induced autophagy arrest,” Molecular Cell, vol. 42, no. 6, pp. 731–743, 2011.
[73]
P. R. Pryor, B. M. Mullock, N. A. Bright, S. R. Gray, and J. P. Luzio, “The role of intraorganellar Ca2+ in late endosome-lysosome heterotypic fusion and in the reformation of lysosomes from hybrid organelles,” Journal of Cell Biology, vol. 149, no. 5, pp. 1053–1062, 2000.
[74]
L. Yu, C. K. McPhee, L. Zheng et al., “Termination of autophagy and reformation of lysosomes regulated by mTOR,” Nature, vol. 465, no. 7300, pp. 942–946, 2010.
[75]
M. W. Dodson, T. Zhang, C. Jiang, et al., “Roles of the Drosophila LRRK2 homolog in rab7-dependent lysosomal positioning,” Human Molecular Genetics, vol. 21, pp. 1350–1363, 2012.
[76]
F. Di Domenico, R. Sultana, A. Ferree, et al., “Redox proteomics analyses of the influence of co-expression of wild-type or mutated LRRK2 and Tau on C. elegans protein expression and oxidative modification: relevance to Parkinson disease,” Antioxidants and Redox Signaling, vol. 17, no. 11, pp. 1490–1506, 2012.
[77]
A. Ferree, M. Guillily, H. Li, et al., “Regulation of physiologic actions of LRRK2: focus on autophagy,” Neurodegenerative Disease, vol. 10, pp. 238–241, 2012.
[78]
A. H. Guse and H. C. Lee, “NAADP: a universal Ca2+ trigger,” Science Signaling, vol. 1, no. 44, p. re10, 2008.
[79]
A. J. Morgan and A. Galione, “NAADP induces pH changes in the lumen of acidic Ca2+ stores,” Biochemical Journal, vol. 402, no. 2, pp. 301–310, 2007.
[80]
E. Lloyd-Evans, A. J. Morgan, X. He et al., “Niemann-Pick disease type C1 is a sphingosine storage disease that causes deregulation of lysosomal calcium,” Nature Medicine, vol. 14, no. 11, pp. 1247–1255, 2008.
[81]
S. Patel and R. Docampo, “Acidic calcium stores open for business: expanding the potential for intracellular Ca2+ signaling,” Trends in Cell Biology, vol. 20, no. 5, pp. 277–286, 2010.
[82]
G. C. Churchill, Y. Okada, J. M. Thomas, A. A. Genazzani, S. Patel, and A. Galione, “NAADP mobilizes Ca2+ from reserve granules, lysosome-related organelles, in sea urchin eggs,” Cell, vol. 111, no. 5, pp. 703–708, 2002.
[83]
A. J. Morgan, F. M. Platt, E. Lloyd-Evans, et al., “Molecular mechanisms of endolysosomal Ca2+ signalling in health and disease,” Biochemical Journal, vol. 439, pp. 349–374, 2011.
[84]
E. Brailoiu, D. Churamani, X. Cai et al., “Essential requirement for two-pore channel 1 in NAADP-mediated calcium signaling,” Journal of Cell Biology, vol. 186, no. 2, pp. 201–209, 2009.
[85]
P. J. Calcraft, M. Ruas, Z. Pan et al., “NAADP mobilizes calcium from acidic organelles through two-pore channels,” Nature, vol. 459, no. 7246, pp. 596–600, 2009.
[86]
S. Patel, L. Ramakrishnan, T. Rahman et al., “The endo-lysosomal system as an NAADP-sensitive acidic Ca2+ store: role for the two-pore channels,” Cell Calcium, vol. 50, no. 2, pp. 157–167, 2011.
[87]
Y. Lin-Moshier, T. F. Walseth, D. Churamani, et al., “Photoaffinity labeling of nicotinic acid adenine dinucleotide phosphate (NAADP) targets in mammalian cells,” Journal of Biological Chemistry, vol. 287, pp. 2296–2307, 2012.
[88]
C. C. Scott and J. Gruenberg, “Ion flux and the function of endosomes and lysosomes: PH is just the start: the flux of ions across endosomal membranes influences endosome function not only through regulation of the luminal pH,” BioEssays, vol. 33, no. 2, pp. 103–110, 2011.
[89]
R. Parkesh, A. M. Lewis, P. K. Aley et al., “Cell-permeant NAADP: a novel chemical tool enabling the study of Ca2+ signalling in intact cells,” Cell Calcium, vol. 43, no. 6, pp. 531–538, 2008.
[90]
E. Naylor, A. Arredouani, S. R. Vasudevan et al., “Identification of a chemical probe for NAADP by virtual screening,” Nature Chemical Biology, vol. 5, no. 4, pp. 220–226, 2009.
[91]
E. Brailoiu, T. Rahman, D. Churamani et al., “An NAADP-gated two-pore channel targeted to the plasma membrane uncouples triggering from amplifying Ca2+ signals,” Journal of Biological Chemistry, vol. 285, no. 49, pp. 38511–38516, 2010.
[92]
V. Rybalchenko, M. Ahuja, J. Coblentz, et al., “Membrane potential regulates NAADP dependence of the pH and Ca2+ sensitive organellar two-pore channel TPC1,” Journal of Biological Chemistry, vol. 287, pp. 20407–20416, 2012.
[93]
S. Bialik and A. Kimchi, “Lethal weapons: DAP-kinase, autophagy and cell death. DAP-kinase regulates autophagy,” Current Opinion in Cell Biology, vol. 22, no. 2, pp. 199–205, 2010.
[94]
J. C. Barrett, S. Hansoul, and D. L. Nicolae, “Genome-wide association defines more than 30 distinct susceptibility loci for Crohn's disease,” Nature Genetics, vol. 40, pp. 955–962, 2008.
[95]
A. Kabi, K. P. Nickerson, and C. R. Homer, “Digesting the genetics of inflammatory bowel disease: insights from study of autophagy risk genes,” Inflammatory Bowel Diseases, vol. 18, pp. 782–792, 2012.
[96]
E. Greggio, L. Civiero, M. Bisaglia, et al., “Parkinson's disease and immune system: is the culprit LRRKing in the periphery?” Journal of Neuroinflammation, vol. 9, article 94, 2012.