Parkinson's disease (PD) has traditionally been characterized by its cardinal motor symptoms of bradykinesia, rigidity, resting tremor, and postural instability. However, PD is increasingly being recognized as a multidimensional disease associated with myriad nonmotor symptoms including autonomic dysfunction, mood disorders, cognitive impairment, pain, gastrointestinal disturbance, impaired olfaction, psychosis, and sleep disorders. Sleep disturbances, which include sleep fragmentation, daytime somnolence, sleep-disordered breathing, restless legs syndrome (RLS), nightmares, and rapid eye movement (REM) sleep behavior disorder (RBD), are estimated to occur in 60% to 98% of patients with PD. For years nonmotor symptoms received little attention from clinicians and researchers, but now these symptoms are known to be significant predictors of morbidity in determining quality of life, costs of disease, and rates of institutionalization. A discussion of the clinical aspects, pathophysiology, evaluation techniques, and treatment options for the sleep disorders that are encountered with PD is presented. 1. Introduction Parkinson’s disease (PD) has traditionally been characterized by its cardinal motor symptoms of bradykinesia, rigidity, resting tremor, and postural instability. However, PD is increasingly being recognized as a multidimensional disease associated with myriad nonmotor symptoms including autonomic dysfunction, mood disorders, cognitive impairment, pain, gastrointestinal disturbance, impaired olfaction, psychosis, and sleep disorders [1, 2]. Sleep disturbances, which include sleep fragmentation, daytime somnolence, sleep-disordered breathing, restless legs syndrome (RLS), nightmares, and rapid eye movement (REM) sleep behavior disorder (RBD), are estimated to occur in 60% to 98% of patients with PD [3–6]. For years nonmotor symptoms received little attention from clinicians and researchers [7, 8], but now these symptoms are known to be significant predictors of morbidity in determining quality of life, costs of disease, and rates of institutionalization [9–15]. James Parkinson, in his Essay on the Shaking Palsy published in 1817, noted that disturbed sleep, in addition to the motor symptoms, significantly affected many of the patients he studied [16]. He described “tremulous motion of the limbs occur during sleep, and augment until they awaken the patient, and frequently with much agitation and alarm.” In his description of “Case VI,” Parkinson wrote that the patient’s attendants observed movements during sleep that increased until it awakened
References
[1]
P. Barone, A. Antonini, C. Colosimo et al., “The Priamo study: a multicenter assessment of nonmotor symptoms and their impact on quality of life in Parkinson's disease,” Movement Disorders, vol. 24, no. 11, pp. 1641–1649, 2009.
[2]
P. Martinez-Martin, A. H. V. Schapira, F. Stocchi et al., “Prevalence of nonmotor symptoms in Parkinson's disease in an international setting; study using nonmotor symptoms questionnaire in 545 patients,” Movement Disorders, vol. 22, no. 11, pp. 1623–1629, 2007.
[3]
E. Tandberg, J. P. Larsen, and K. Karlsen, “A community-based study of sleep disorders in patients with Parkinson's disease,” Movement Disorders, vol. 13, no. 6, pp. 895–899, 1998.
[4]
A. J. Lees, N. A. Blackburn, and V. L. Campbell, “The nighttime problems of Parkinson's disease,” Clinical Neuropharmacology, vol. 11, no. 6, pp. 512–519, 1988.
[5]
M. J. Thorpy, “Sleep disorders in Parkinson's disease,” Clinical Cornerstone, vol. 6, no. 1, pp. S7–S15, 2004.
[6]
J. H. Friedman and K. L. Chou, “Sleep and fatigue in Parkinson's disease,” Parkinsonism and Related Disorders, vol. 10, supplement 1, pp. S27–S35, 2004.
[7]
L. M. Shulman, R. L. Taback, J. Bean, and W. J. Weiner, “Comorbity of the nonmotor symptoms of Parkinson's disease,” Movement Disorders, vol. 16, no. 3, pp. 507–510, 2001.
[8]
L. M. Shulman, R. L. Taback, A. A. Rabinstein, and W. J. Weiner, “Non-recognition of depression and other non-motor symptoms in Parkinson's disease,” Parkinsonism and Related Disorders, vol. 8, no. 3, pp. 193–197, 2002.
[9]
Global Parkinson's Disease Survey Steering Committee, “Factors impacting on quality of life in Parkinson's disease: results from an international survey,” Movement Disorders, vol. 17, no. 1, pp. 60–67, 2002.
[10]
D. Aarsland, J. P. Larsen, E. Tandberg, and K. Laake, “Predictors of nursing home placement in Parkinson's disease: a population-based, prospective study,” Journal of the American Geriatrics Society, vol. 48, no. 8, pp. 938–942, 2000.
[11]
T. Witjas, E. Kaphan, J. P. Azulay et al., “Nonmotor fluctuations in Parkinson's disease: frequent and disabling,” Neurology, vol. 59, no. 3, pp. 408–413, 2002.
[12]
A. Schrag, M. Jahanshahi, and N. Quinn, “What contributes to quality of life in patients with Parkinson's disease?” Journal of Neurology, Neurosurgery & Psychiatry, vol. 69, no. 3, pp. 308–312, 2000.
[13]
L. Findley, M. Aujla, P. G. Bain et al., “Direct economic impact of Parkinson's disease: a research survey in the United Kingdom,” Movement Disorders, vol. 18, no. 10, pp. 1139–1145, 2003.
[14]
P. Hagell, S. Nordling, J. Reimer, M. Grabowski, and U. Persson, “Resource use and costs in a Swedish cohort of patients with Parkinson's disease,” Movement Disorders, vol. 17, no. 6, pp. 1213–1220, 2002.
[15]
J. C. Pressley, E. D. Louis, M. X. Tang et al., “The impact of comorbid disease and injuries on resource use and expenditures in parkinsonism,” Neurology, vol. 60, no. 1, pp. 87–93, 2003.
[16]
J. Parkinson, An Essay on the Shaking Palsy, Sherwood, Neely and Jones, London, UK, 1817.
[17]
H. Braak, K. del Tredici, U. Rüb, R. A. I. de Vos, E. N. H. Jansen Steur, and E. Braak, “Staging of brain pathology related to sporadic Parkinson's disease,” Neurobiology of Aging, vol. 24, no. 2, pp. 197–211, 2003.
[18]
L. T. Grinberg, U. Rueb, A. T. D. L. Alho, and H. Heinsen, “Brainstem pathology and non-motor symptoms in PD,” Journal of the Neurological Sciences, vol. 289, no. 1-2, pp. 81–88, 2010.
[19]
G. Moruzzi and H. W. Magoun, “Brain stem reticular formation and activation of the EEG,” Electroencephalography and Clinical Neurophysiology, vol. 1, no. 1–4, pp. 455–473, 1949.
[20]
M. Steriade, S. Datta, D. Paré, G. Oakson, and R. Curró Dossi, “Neuronal activities in brain-stem cholinergic nuclei related to tonic activation processes in thalamocortical systems,” Journal of Neuroscience, vol. 10, no. 8, pp. 2541–2559, 1990.
[21]
E. F. Pace-Schott and J. A. Hobson, “The neurobiology of sleep: genetics, cellular physiology and subcortical networks,” Nature Reviews Neuroscience, vol. 3, no. 8, pp. 591–605, 2002.
[22]
M. Steriade, “Arousal: revisiting the reticular activating system,” Science, vol. 272, no. 5259, pp. 225–226, 1996.
[23]
D. M. Armstrong, C. B. Saper, and A. I. Levey, “Distribution of cholinergic neurons in rat brain: deomonstrated by the immunocytochemical localization of choline acetyltransferase,” Journal of Comparative Neurology, vol. 216, no. 1, pp. 53–68, 1983.
[24]
R. A. Espa?a and T. E. Scammell, “Sleep neurobiology for the clinician,” Sleep, vol. 27, no. 4, pp. 811–820, 2004.
[25]
R. A. Espa?a and T. E. Scammell, “Sleep neurobiology from a clinical perspective,” Sleep, vol. 34, no. 7, pp. 845–858, 2011.
[26]
L. Détári, D. D. Rasmusson, and K. Semba, “The role of basal forebrain neurons in tonic and phasic activation of the cerebral cortex,” Progress in Neurobiology, vol. 58, no. 3, pp. 249–277, 1999.
[27]
I. Tork, “Anatomy of the serotonergic system,” Annals of the New York Academy of Sciences, vol. 600, pp. 9–35, 1990.
[28]
W. P. Koella, “Serotonin and sleep,” Experimental Medicine and Surgery, vol. 27, no. 1-2, pp. 157–168, 1969.
[29]
B. Schonrock, D. Busselberg, and H. L. Haas, “Properties of tuberomammillary histamine neurones and their response to galanin,” Agents and Actions, vol. 33, no. 1-2, pp. 135–137, 1991.
[30]
Q. Z. Yang and G. I. Hatton, “Electrophysiology of excitatory and inhibitory afferents to rat histaminergic tuberomammillary nucleus neurons from hypothalamic and forebrain sites,” Brain Research, vol. 773, no. 1-2, pp. 162–172, 1997.
[31]
L. de Lecea, T. S. Kilduff, C. Peyron et al., “The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 1, pp. 322–327, 1998.
[32]
T. Sakurai, A. Amemiya, M. Ishii et al., “Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior,” Cell, vol. 92, no. 4, pp. 573–585, 1998.
[33]
M. M. Methippara, M. N. Alam, R. Szymusiak, and D. McGinty, “Effects of lateral preoptic area application of orexin-A on sleep-wakefulness,” NeuroReport, vol. 11, no. 16, pp. 3423–3426, 2000.
[34]
R. A. Espaa, B. A. Baldo, A. E. Kelley, and C. W. Berridge, “Wake-promoting and sleep-suppressing actions of hypocretin (orexin): basal forebrain sites of action,” Neuroscience, vol. 106, no. 4, pp. 699–715, 2001.
[35]
T. S. Kilduff and C. Peyron, “The hypocretin/orexin ligand-receptor system: implications for sleep and sleep disorders,” Trends in Neurosciences, vol. 23, no. 8, pp. 359–365, 2000.
[36]
L. I. Kiyashchenko, B. Y. Mileykovskiy, Y. Y. Lai, and J. M. Siegel, “Increased and decreased muscle tone with orexin (hypocretin) microinjections in the locus coeruleus and pontine inhibitory area,” Journal of Neurophysiology, vol. 85, no. 5, pp. 2008–2016, 2001.
[37]
P. Torterolo, P. Lagos, and J. Monti, “Melanin-concentrating hormone: a new sleep factor,” Frontiers in Neurology, vol. 2, pp. 1–12, 2011.
[38]
J. E. Sherin, P. J. Shiromani, R. W. McCarley, and C. B. Saper, “Activation of ventrolateral preoptic neurons during sleep,” Science, vol. 271, no. 5246, pp. 216–219, 1996.
[39]
H. Gong, D. McGinty, R. Guzman-Marin, K. T. Chew, D. Stewart, and R. Szymusiak, “Activation of c-fos in GABAergic neurones in the preoptic area during sleep and in response to sleep deprivation,” Journal of Physiology, vol. 556, no. 3, pp. 935–946, 2004.
[40]
R. Szymusiak, N. Alam, T. L. Steininger, and D. McGinty, “Sleep-waking discharge patterns of ventrolateral preoptic/anterior hypothalamic neurons in rats,” Brain Research, vol. 803, no. 1-2, pp. 178–188, 1998.
[41]
K. Takahashi, J. S. Lin, and K. Sakai, “Characterization and mapping of sleep-waking specific neurons in the basal forebrain and preoptic hypothalamus in mice,” Neuroscience, vol. 161, no. 1, pp. 269–292, 2009.
[42]
N. Suntsova, R. Szymusiak, M. N. Alam, R. Guzman-Marin, and D. McGinty, “Sleep-waking discharge patterns of median preoptic nucleus neurons in rats,” Journal of Physiology, vol. 543, no. 2, pp. 665–677, 2002.
[43]
O. K. Hassani, P. Henny, M. G. Lee, and B. E. Jones, “GABAergic neurons intermingled with orexin and MCH neurons in the lateral hypothalamus discharge maximally during sleep,” European Journal of Neuroscience, vol. 32, no. 3, pp. 448–457, 2010.
[44]
T. A. A. O. S. Medicine, The International Classification of Sleep Disorders. Diagnostic & Coding Manual, American Academy of Sleep Medicine, Westchester, Ill, USA, 2nd edition, 2005.
[45]
B. F. Boeve, M. H. Silber, C. B. Saper et al., “Pathophysiology of REM sleep behaviour disorder and relevance to neurodegenerative disease,” Brain, vol. 130, no. 11, pp. 2770–2788, 2007.
[46]
R. Boissard, P. Fort, D. Gervasoni, B. Barbagli, and P. H. Luppi, “Localization of the GABAergic and non-GABAergic neurons projecting to the sublaterodorsal nucleus and potentially gating paradoxical sleep onset,” European Journal of Neuroscience, vol. 18, no. 6, pp. 1627–1639, 2003.
[47]
J. C. Hendricks, A. R. Morrison, and G. L. Mann, “Different behaviors during paradoxical sleep without atonia depend on pontine lesion site,” Brain Research, vol. 239, no. 1, pp. 81–105, 1982.
[48]
V. de Cock, R. Debs, D. Oudiette et al., “The improvement of movement and speech during rapid eye movement sleep behaviour disorder in multiple system atrophy,” Brain, vol. 134, no. 3, pp. 856–862, 2011.
[49]
V. C. de Cock, M. Vidailhet, S. Leu et al., “Restoration of normal motor control in Parkinson's disease during REM sleep,” Brain, vol. 130, part 2, pp. 450–456, 2007.
[50]
C. H. Schenck, S. R. Bundlie, and M. W. Mahowald, “Delayed emergence of a parkinsonian disorder in 38% of 29 older, men initially diagnosed with idiopathic rapid eye movement sleep behavior disorder,” Neurology, vol. 46, no. 2, pp. 388–393, 1996.
[51]
D. O. Claassen, K. A. Josephs, J. E. Ahlskog, M. H. Silber, M. Tippmann-Peikert, and B. F. Boeve, “REM sleep behavior disorder preceding other aspects of synucleinopathies by up to half a century,” Neurology, vol. 75, no. 6, pp. 494–499, 2010.
[52]
M. Grazia Spillantini, R. Anthony Crowther, R. Jakes, N. J. Cairns, P. L. Lantos, and M. Goedert, “Filamentous α-synuclein inclusions link multiple system atrophy with Parkinson's disease and dementia with Lewy bodies,” Neuroscience Letters, vol. 251, no. 3, pp. 205–208, 1998.
[53]
I. Arnulf, M. Merino-Andreu, F. Bloch et al., “REM sleep behavior disorder and REM sleep without atonia in patients with progressive supranuclear palsy,” Sleep, vol. 28, no. 3, pp. 349–354, 2005.
[54]
J. H. Friedman, “Presumed rapid eye movement behavior disorder in Machado-Joseph disease (Spinocerebellar ataxia type 3),” Movement Disorders, vol. 17, no. 6, pp. 1350–1353, 2002.
[55]
E. Sforza, J. Krieger, and C. Petiau, “REM sleep behavior disorder: clinical and physiopathological findings,” Sleep Medicine Reviews, vol. 1, no. 1, pp. 57–69, 1997.
[56]
C. H. Schenck, E. Garcia-Rill, R. D. Skinner, M. L. Anderson, and M. W. Mahowald, “A case of REM sleep behavior disorder with autopsy-confirmed Alzheimer's disease: postmortem brain stem histochemical analyses,” Biological Psychiatry, vol. 40, no. 5, pp. 422–425, 1996.
[57]
J. F. Gagnon, M. A. Bédard, M. L. Fantini et al., “REM sleep behavior disorder and REM sleep without atonia in Parkinson's disease,” Neurology, vol. 59, no. 4, pp. 585–589, 2002.
[58]
B. Boeve, “Dementia with lewy bodies,” in Continuum, R. Peterson, Ed., pp. 81–112, American Academy of Neurology, Minneapolis, Minn, USA, 2004.
[59]
G. Plazzi, R. Corsini, F. Provini et al., “REM sleep behavior disorders in multiple system atrophy,” Neurology, vol. 48, no. 4, pp. 1094–1097, 1997.
[60]
R. D. Abbott, G. W. Ross, L. R. White et al., “Excessive daytime sleepiness and subsequent development of Parkinson disease,” Neurology, vol. 65, no. 9, pp. 1442–1446, 2005.
[61]
K. H. Karlsen, E. Tandberg, D. ?rsland, and J. P. Larsen, “Health related quality of life in Parkinson's disease: a prospective longitudinal study,” Journal of Neurology Neurosurgery and Psychiatry, vol. 69, no. 5, pp. 584–589, 2000.
[62]
E. Tandberg, J. Larsen, and K. Karlsen, “Excessive daytime sleepiness and sleep benefit in Parkinson's disease: a community-based study,” Movement Disorders, vol. 14, no. 6, pp. 922–927, 1999.
[63]
B. Knie, M. T. Mitra, K. Logishetty, and K. R. Chaudhuri, “Excessive daytime sleepiness in patients with parkinsons disease,” CNS Drugs, vol. 25, no. 3, pp. 203–212, 2011.
[64]
S. Kumar, M. Bhatia, and M. Behari, “Excessive daytime sleepiness in Parkinson's disease as assessed by Epworth Sleepiness Scale (ESS),” Sleep Medicine, vol. 4, no. 4, pp. 339–342, 2003.
[65]
I. Arnulf, E. Konofal, M. Merino-Andreu et al., “Parkinson's disease and sleepiness: an integral part of PD,” Neurology, vol. 58, no. 7, pp. 1019–1024, 2002.
[66]
S. Stevens, C. L. Comella, and E. J. Stepanski, “Daytime sleepiness and alertness in patients with Parkinson disease,” Sleep, vol. 27, no. 5, pp. 967–972, 2004.
[67]
I. Arnulf, “Excessive daytime sleepiness in parkinsonism,” Sleep Medicine Reviews, vol. 9, no. 3, pp. 185–200, 2005.
[68]
R. Fronczek, S. Overeem, S. Y. Y. Lee et al., “Hypocretin (orexin) loss and sleep disturbances in Parkinson's Disease,” Brain, vol. 131, no. 1, p. e88, 2008.
[69]
I. O. Ebrahim, M. K. Sharief, S. de Lacy et al., “Hypocretin (orexin) deficiency in narcolepsy and primary hypersomnia,” Journal of Neurology Neurosurgery and Psychiatry, vol. 74, no. 1, pp. 127–130, 2003.
[70]
T. C. Thannickal, Y. Y. Lai, and J. M. Siegel, “Hypocretin (orexin) cell loss in Parkinson's disease,” Brain, vol. 130, no. 6, pp. 1586–1595, 2007.
[71]
S. Frucht, J. D. Rogers, P. E. Greene, M. F. Gordon, and S. Fahn, “Falling asleep at the wheel: motor vehicle mishaps in persons taking pramipexole and ropinirole,” Neurology, vol. 52, no. 9, pp. 1908–1910, 1999.
[72]
R. A. Hauser, L. Gauger, W. M. Anderson, and T. A. Zesiewicz, “Pramipexole-induced somnolence and episodes of daytime sleep,” Movement Disorders, vol. 15, no. 4, pp. 658–663, 2000.
[73]
M. Ryan, J. T. Slevin, and A. Wells, “Non-ergot dopamine agonist-induced sleep attacks,” Pharmacotherapy, vol. 20, no. 6, pp. 724–726, 2000.
[74]
J. Ferreira, M. Galitzky, J. L. Montastruc, and O. Rascol, “Sleep attacks and Parkinson's disease treatment,” The Lancet, vol. 355, pp. 1333–1334, 2000.
[75]
A. H. V. Schapira, “Sleep attacks (sleep episodes) with pergolide,” The Lancet, vol. 355, no. 9212, pp. 1332–1333, 2000.
[76]
D. E. Hobson, A. E. Lang, W. R. Wayne Martin, A. Razmy, J. Rivest, and J. Fleming, “Excessive daytime sleepiness and sudden-onset sleep in Parkinson disease: a survey by the Canadian Movement Disorders Group,” Journal of the American Medical Association, vol. 287, no. 4, pp. 455–463, 2002.
[77]
D. Kaynak, G. Kiziltan, H. Kaynak, G. Benbir, and O. Uysal, “Sleep and sleepiness in patients with Parkinson's disease before and after dopaminergic treatment,” European Journal of Neurology, vol. 12, no. 3, pp. 199–207, 2005.
[78]
S. Nishino, J. Mao, R. Sampathkumaran, J. Shelton, and E. Mignot, “Increased dopaminergic transmission mediates the wake-promoting effects of CNS stimulants,” Sleep Research Online, vol. 1, no. 1, pp. 49–61, 1998.
[79]
J. P. Wisor, S. Nishino, I. Sora, G. H. Uhl, E. Mignot, and D. M. Edgar, “Dopaminergic role in stimulant-induced wakefulness,” Journal of Neuroscience, vol. 21, no. 5, pp. 1787–1794, 2001.
[80]
S. O. Isaac and C. W. Berridge, “Wake-promoting actions of dopamine D1 and D2 receptor stimulation,” Journal of Pharmacology and Experimental Therapeutics, vol. 307, no. 1, pp. 386–394, 2003.
[81]
D. B. Rye, “The two faces of Eve: dopamine's modulation of wakefulness and sleep,” Neurology, vol. 63, no. 8, supplement 3, pp. S2–S7, 2004.
[82]
M. M. Ohayon and T. Roth, “Prevalence of restless legs syndrome and periodic limb movement disorder in the general population,” Journal of Psychosomatic Research, vol. 53, no. 1, pp. 547–554, 2002.
[83]
G. Pelletier, D. Lorrain, and J. Montplaisir, “Sensory and motor components of the restless legs syndrome,” Neurology, vol. 42, no. 9, pp. 1663–1666, 1992.
[84]
J. R. Connor, “Pathophysiology of restless legs syndrome: evidence for iron involvement,” Current Neurology and Neuroscience Reports, vol. 8, no. 2, pp. 162–166, 2008.
[85]
M. Gjerstad, O. Tysnes, and J. Larsen, “Increased risk of leg motor restlessness but not RLS in early Parkinson disease,” Neurology, vol. 77, pp. 1941–1946, 2011.
[86]
I. Arnulf and J. Morgan, “Not all that goes, “bump in the night” is RLS. Leg motor restlessness in PD,” Neurology, vol. 77, pp. 1936–1937, 2011.
[87]
G. Fénelon, F. Mahieux, R. Huon, and M. Ziégler, “Hallucinations in Parkinson's disease: prevalence, phenomenology and risk factors,” Brain, vol. 123, no. 4, pp. 733–745, 2000.
[88]
C. Pacchetti, R. Manni, R. Zangaglia et al., “Relationship between hallucinations, delusions, and rapid eye movement sleep behavior disorder in Parkinson's disease,” Movement Disorders, vol. 20, no. 11, pp. 1439–1448, 2005.
[89]
C. L. Comella, C. M. Tanner, and R. K. Ristanovic, “Polysomnographic sleep measures in Parkinson's disease patients with treatment-induced hallucinations,” Annals of Neurology, vol. 34, no. 5, pp. 710–714, 1993.
[90]
I. Arnulf, A. M. Bonnet, P. Damier et al., “Hallucinations, REM sleep, and Parkinson's disease: a medical hypothesis,” Neurology, vol. 55, no. 2, pp. 281–288, 2000.
[91]
R. Manni, C. Pacchetti, M. Terzaghi, I. Sartori, F. Mancini, and G. Nappi, “Hallucinations and sleep-wake cycle in PD: a 24-hour continuous polysomnographic study,” Neurology, vol. 59, no. 12, pp. 1979–1981, 2002.
[92]
J. H. Friedman and H. H. Fernandez, “Atypical antipsychotics in Parkinson-sensitive populations,” Journal of Geriatric Psychiatry and Neurology, vol. 15, no. 3, pp. 156–170, 2002.
[93]
B. Maria, S. Sophia, M. Michalis et al., “Sleep breathing disorders in patients with idiopathic Parkinson's disease,” Respiratory Medicine, vol. 97, no. 10, pp. 1151–1157, 2003.
[94]
N. J. Diederich, M. Vaillant, M. Leischen et al., “Sleep apnea syndrome in Parkinson's disease. A case-control study in 49 patients,” Movement Disorders, vol. 20, no. 11, pp. 1413–1418, 2005.
[95]
S. J. Kish, “Biochemistry of Parkinson's disease: is a brain serotonergic deficiency a characteristic of idiopathic Parkinson's disease?” Advances in Neurology, vol. 91, pp. 39–49, 2003.
[96]
L. Kerenyi, G. A. Ricaurte, D. J. Schretlen et al., “Positron emission tomography of striatal serotonin transporters in Parkinson disease,” Archives of Neurology, vol. 60, no. 9, pp. 1223–1229, 2003.
[97]
R. L. Albin, R. A. Koeppe, N. I. Bohnen, K. Wernette, M. A. Kilbourn, and K. A. Frey, “Spared caudal brainstem SERT binding in early Parkinson's disease,” Journal of Cerebral Blood Flow and Metabolism, vol. 28, no. 3, pp. 441–444, 2008.
[98]
S. J. Kish, J. Tong, O. Hornykiewicz et al., “Preferential loss of serotonin markers in caudate versus putamen in Parkinson's disease,” Brain, vol. 131, part 1, pp. 120–131, 2008.
[99]
S. Schiermeier, D. Sch?fer, T. Sch?fer, W. Greulich, and M. E. Schl?fke, “Breathing and locomotion in patients with Parkinson's disease,” Pflugers Archiv European Journal of Physiology, vol. 443, no. 1, pp. 67–71, 2001.
[100]
G. Micieli, P. Tosi, S. Marcheselli, and A. Cavallini, “Autonomic dysfunction in Parkinson's disease,” Neurological Sciences, vol. 24, no. 1, pp. S32–S34, 2003.
[101]
W. Chotinaiwattarakul, P. Dayalu, R. D. Chervin, and R. L. Albin, “Risk of sleep-disordered breathing in Parkinson's disease,” Sleep and Breathing, vol. 15, no. 3, pp. 471–478, 2011.
[102]
D. J. Buysse, C. F. Reynolds, T. H. Monk, S. R. Berman, and D. J. Kupfer, “The pittsburgh sleep quality index: a new instrument for psychiatric practice and research,” Psychiatry Research, vol. 28, no. 2, pp. 193–213, 1989.
[103]
S. Fahn, et al., “Unified Parkinson's disease rating scale,” in Recent Developments in Parkinson's Disease, S. Fahn, et al., Ed., pp. 153–163, 293–304, MacMillan Healthcare Information, Florham Park, NJ, USA, 1987.
[104]
K. R. Chaudhuri, S. Pal, A. DiMarco et al., “The Parkinson's disease sleep scale: a new instrument for assessing sleep and nocturnal disability in Parkinson's disease,” Journal of Neurology Neurosurgery and Psychiatry, vol. 73, no. 6, pp. 629–635, 2002.
[105]
J. Marinus, M. Visser, J. J. van Hilten, G. J. Lammers, and A. M. Stiggelbout, “Assessment of sleep and sleepiness in parkinson disease,” Sleep, vol. 26, no. 8, pp. 1049–1054, 2003.
[106]
P. Martinez-Martin, M. Visser, C. Rodriguez-Blazquez et al., “SCOPA-sleep and PDSS: two scales for assessment of sleep disorder in Parkinson's disease,” Movement Disorders, vol. 23, no. 12, pp. 1681–1688, 2008.
[107]
C. G. Goetz, B. C. Tilley, S. R. Shaftman et al., “Movement Disorder Society-Sponsored Revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results,” Movement Disorders, vol. 23, no. 15, pp. 2129–2170, 2008.
[108]
K. R. Chaudhuri, P. Martinez-Martin, R. G. Brown et al., “The metric properties of a novel non-motor symptoms scale for Parkinson's disease: results from an international pilot study,” Movement Disorders, vol. 22, no. 13, pp. 1901–1911, 2007.
[109]
P. Martinez-Martin, C. Rodriguez-Blazquez, K. Abe et al., “International study on the psychometric attributes of the Non-Motor Symptoms Scale in Parkinson disease,” Neurology, vol. 73, no. 19, pp. 1584–1591, 2009.
[110]
B. H?gl, I. Arnulf, C. Comella et al., “Scales to assess sleep impairment in Parkinson's disease: critique and recommendations,” Movement Disorders, vol. 25, no. 16, pp. 2704–2716, 2010.
[111]
W. Tse, Y. Liu, G. M. Barthlen et al., “Clinical usefulness of the Parkinson's disease sleep scale,” Parkinsonism and Related Disorders, vol. 11, no. 5, pp. 317–321, 2005.
[112]
C. Trenkwalder, R. Kohnen, B. H?gl et al., “Parkinson's disease sleep scale-validation of the revised version PDSS-2,” Movement Disorders, vol. 26, no. 4, pp. 644–652, 2011.
[113]
Y. Okuma, S. Kamei, A. Morita et al., “Fatigue in Japanese patients with Parkinson's disease: a study using parkinson fatigue scale,” Movement Disorders, vol. 24, no. 13, pp. 1977–1983, 2009.
[114]
C. Trenkwalder, B. Kies, M. Rudzinska et al., “Rotigotine effects on early morning motor function and sleep in Parkinson's disease: a double-blind, randomized, placebo-controlled study (RECOVER),” Movement Disorders, vol. 26, no. 1, pp. 90–99, 2011.
[115]
A. A. Borbely and I. Tobler, “Endogenous sleep-promoting substances and sleep regulation,” Physiological Reviews, vol. 69, no. 2, pp. 605–670, 1989.
[116]
W. Dement and C. Vaughan, The Promise of Sleep, Dell, New York, NY, USA, 1999.
[117]
H. P. A. van Dongen, G. Maislin, J. M. Mullington, and D. F. Dinges, “The cumulative cost of additional wakefulness: Dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation,” Sleep, vol. 26, no. 2, pp. 117–126, 2003.
[118]
M. Silber, “The investigation of sleepiness,” in Excessive Sleepiness, C. Guilleminault, Ed., pp. 1–7, WB Saunders, Philadelphia, Pa, USA, 2006.
[119]
B. Phillips and M. Kryger, “Management of obstructive sleep apnea-hypopnea syndrome,” in Principles and Practice of Sleep Medicine, pp. 1278–1293, Elsevier, St. Louis, Mo, USA, 2011.
[120]
T. Morgenthaler, C. Alessi, L. Friedman, et al., “Practice parameters for the use of actigraphy in the clinical assessment of sleep disorders,” Sleep, vol. 18, no. 4, pp. 285–287, 1995.
[121]
E. Hoddes, V. Zarcone, and H. Smythe, “Quantification of sleepiness: a new approach,” Psychophysiology, vol. 10, no. 4, pp. 431–436, 1973.
[122]
M. W. Johns, “A new method for measuring daytime sleepiness: the Epworth sleepiness scale,” Sleep, vol. 14, no. 6, pp. 540–545, 1991.
[123]
M. W. Johns, “Sleepiness in different situations measured by the Epworth Sleepiness Scale,” Sleep, vol. 17, no. 8, pp. 703–710, 1994.
[124]
R. D. Chervin and M. S. Aldrich, “The Epworth Sleepiness Scale may not reflect objective measures of sleepiness or sleep apnea,” Neurology, vol. 52, no. 1, pp. 125–131, 1999.
[125]
S. R. Benbadis, E. Mascha, M. C. Perry, B. R. Wolgamuth, L. A. Smolley, and D. S. Dinner, “Association between the Epworth Sleepiness Scale and the multiple sleep latency test in a clinical population,” Annals of Internal Medicine, vol. 130, no. 4, pp. 289–292, 1999.
[126]
M. Carskadon and W. Dement, “Sleep tendency: an objective measure of sleep loss,” Journal of Sleep Research, vol. 6, p. 200, 1977.
[127]
L. Rosenthal, T. A. Roehrs, A. Rosen, and T. Roth, “Level of sleepiness and total sleep time following various time in bed conditions,” Sleep, vol. 16, no. 3, pp. 226–232, 1993.
[128]
M. R. Littner, C. Kushida, M. Wise et al., “Practice parameters for clinical use of the multiple sleep latency test and the maintenance of wakefulness test,” Sleep, vol. 28, no. 1, pp. 113–121, 2005.
[129]
M. S. Aldrich, R. D. Chervin, and B. A. Malow, “Value of the multiple sleep latency test (MSLT) for the diagnosis of narcolepsy,” Sleep, vol. 20, no. 8, pp. 620–629, 1997.
[130]
C. Baumann, L. Ferini-Strambi, D. Waldvogel, E. Werth, and C. L. Bassetti, “Parkinsonism with excessive daytime sleepiness: a narcolepsy-like disorder?” Journal of Neurology, vol. 252, no. 2, pp. 139–145, 2005.
[131]
I. Arnulf, “Sleep disorders during synucleopathies and taupathies,” Revue Neurologique, vol. 159, supplement 11, pp. S6–S77, 2003.
[132]
A. Razmy, A. E. Lang, and C. M. Shapiro, “Predictors of impaired daytime sleep and wakefulness in patients with parkinson disease treated with older (ergot) versus newer (nonergot) dopamine agonists,” Archives of Neurology, vol. 61, no. 1, pp. 97–102, 2004.
[133]
C. L. Comella, M. Morrissey, and K. Janko, “Nocturnal activity with nighttime pergolide in Parkinson disease: a controlled study using actigraphy,” Neurology, vol. 64, no. 8, pp. 1450–1451, 2005.
[134]
A. D. Lawrence, A. H. Evans, and A. J. Lees, “Compulsive use of dopamine replacement therapy in Parkinson's disease: reward systems gone awry?” Lancet Neurology, vol. 2, no. 10, pp. 595–604, 2003.
[135]
J. F. Gagnon, R. B. Postuma, and J. Montplaisir, “Update on the pharmacology of REM sleep behavior disorder,” Neurology, vol. 67, no. 5, pp. 742–747, 2006.
[136]
N. Takeuchi, N. Uchimura, Y. Hashizume et al., “Melatonin therapy for REM sleep behavior disorder,” Psychiatry and Clinical Neurosciences, vol. 55, no. 3, pp. 267–269, 2001.
[137]
B. F. Boeve, M. H. Silber, and T. J. Ferman, “Melatonin for treatment of REM sleep behavior disorder in neurologic disorders: results in 14 patients,” Sleep Medicine, vol. 4, no. 4, pp. 281–284, 2003.
[138]
A. Tan, M. Salgado, and S. Fahn, “Rapid eye movement sleep behavior disorder preceding Parkinson's disease with therapeutic response to levodopa,” Movement Disorders, vol. 11, no. 2, pp. 214–216, 1996.
[139]
M. L. Fantini, J. F. Gagnon, D. Filipini, and J. Montplaisir, “The effects of pramipexole in REM sleep behavior disorder,” Neurology, vol. 61, no. 10, pp. 1418–1420, 2003.
[140]
C. R. Bamford, “Carbamazepine in REM sleep behavior disorder,” Sleep, vol. 16, no. 1, pp. 33–34, 1993.
[141]
J. M. Ringman and J. H. Simmons, “Treatment of REM sleep behavior disorder with donepezil: a report of three cases,” Neurology, vol. 55, no. 6, pp. 870–871, 2000.
[142]
B. F. Boeve, M. H. Silber, and T. J. Ferman, “Current management of sleep disturbances in dementia,” Current Neurology and Neuroscience Reports, vol. 2, no. 2, pp. 169–177, 2002.
[143]
J. W. Winkelman and L. James, “Serotonergic antidepressants are associated with REM sleep without atonia,” Sleep, vol. 27, no. 2, pp. 317–321, 2004.
[144]
T. C. Yaltho and W. G. Ondo, “The use of gabapentin enacarbil in the treatment of restless legs syndrome,” Therapeutic Advances in Neurological Disorders, vol. 3, no. 5, pp. 269–275, 2010.
[145]
K. Ekbom and J. Ulfberg, “Restless legs syndrome,” Journal of Internal Medicine, vol. 266, no. 5, pp. 419–431, 2009.
[146]
S. Mizuno, T. Mihara, T. Miyaoka, T. Inagaki, and J. Horiguchi, “CSF iron, ferritin and transferrin levels in restless legs syndrome,” Journal of Sleep Research, vol. 14, no. 1, pp. 43–47, 2005.
[147]
G. A. Dowling, J. Mastick, E. Colling, J. H. Carter, C. M. Singer, and M. J. Aminoff, “Melatonin for sleep disturbances in Parkinson's disease,” Sleep Medicine, vol. 6, no. 5, pp. 459–466, 2005.
[148]
K. Abe, T. Hikita, and S. Sakoda, “A hypnotic drug for sleep disturbances in patients with Parkinson's disease,” Brain and Nerve, vol. 57, no. 4, pp. 301–305, 2005.
[149]
J. S. Poceta, “Zolpidem ingestion, automatisms, and sleep driving: a clinical and legal case series,” Journal of Clinical Sleep Medicine, vol. 7, no. 6, pp. 632–638, 2011.
[150]
W. G. Ondo, R. Fayle, F. Atassi, and J. Jankovic, “Modafinil for daytime somnolence in Parkinson's disease: double blind, placebo controlled parallel trial,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 76, no. 12, pp. 1636–1639, 2005.
[151]
W. G. Ondo, T. Perkins, T. Swick et al., “Sodium oxybate for excessive daytime sleepiness in Parkinson disease: an open-label polysomnographic study,” Archives of Neurology, vol. 65, no. 10, pp. 1337–1340, 2008.