全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Polymorphism of μ-Opioid Receptor Gene (OPRM1:c.118A>G) Might Not Protect against or Enhance Morphine-Induced Nausea or Vomiting

DOI: 10.1155/2013/259306

Full-Text   Cite this paper   Add to My Lib

Abstract:

A cohort, double blind, and randomized study was conducted to investigate the effect of a single nucleotide polymorphism of the μ-opioid receptor at nucleotide position 118 (OPRM1:c.118A>G) on the association with the most common side effects (nausea or vomiting) induced by intravenous patient control analgesia (IVPCA) with morphine, including incidence and severity analysis. A total of 129 Taiwanese women undergoing gynecology surgery received IVPCA with pure morphine for postoperative pain relief. Blood samples were collected and sequenced with high resolution melting analysis to detect three different genotypes of OPRM1 (AA, AG, and GG). All candidates 24?h postoperatively will be interviewed to record the clinical phenotype with subjective complaints and objective observations. The genotyping after laboratory analysis showed that 56 women (43.4%) were AA, 57 (44.2%) were AG, and 16 (12.4%) were GG. The distribution of genotype did not violate Hardy-Weinberg equilibrium test. There was no significant difference neither between the severity and incidence of IVPCA morphine-induced side effects and genotype nor between the association between morphine consumption versus genotype. However, there was significant difference of the relation between morphine consumption and the severity and incidence of IVPCA morphine-induced nausea and vomiting. The genetic analysis for the severity and incidence of IVPCA morphine-induced nausea or vomiting showed no association between phenotype and genotype. It might imply that OPRM1:c.118A>G does not protect against IVPCA morphine-induced nausea or vomiting. 1. Introduction IVPCA with pure morphine at present clinical practice was still widely used for postoperative pain management by providing excellent analgesic effect [1, 2]; however, the high incidence of some annoying side effects, especially nausea or vomiting induced by IVPCA morphine, may limit its clinical implication. The most common side effects of IVPCA morphine are nausea or vomiting, with some other less common like pruritus (2% to 10%) [3], urinary retention and respiration depression [4, 5]. The incidence of postoperative nausea or vomiting has been reported from 20% to 30% and the incidence of severe nausea and vomiting around 0.1% [6–8]. The prophylactic protocol or treatment regimen for opioid-induced nausea or vomiting had been elucidated and studied recently with many publications [9–19]. Previous studies investigating the association between IVPCA morphine and the genetic variability of human μ-opioid receptor gene had focused on the difference of

References

[1]  Y. Lim, S. Jha, A. T. Sia, and N. Rawal, “Morphine for post-caesarean section analgesia: intrathecal, epidural or intravenous?” Singapore Medical Journal, vol. 46, no. 8, pp. 392–396, 2005.
[2]  R. S. Sinatra, K. Lodge, K. Silbert et al., “A comparison of morphine, meperidine, and oxymorphone as utilized in patient-controlled analgesia following cesarean delivery,” Anesthesiology, vol. 70, no. 4, pp. 585–590, 1989.
[3]  N. Cherny, C. Ripamonti, J. Pereira et al., “Strategies to manage the adverse effects of oral morphine: an evidence-based report,” Journal of Clinical Oncology, vol. 19, no. 9, pp. 2542–2554, 2001.
[4]  M. S. Cepeda, J. T. Farrar, M. Baumgarten, R. Boston, D. B. Carr, and B. L. Strom, “Side effects of opioids during short-term administration: effect of age, gender, and race,” Clinical Pharmacology and Therapeutics, vol. 74, no. 2, pp. 102–112, 2003.
[5]  M. F. Watcha and P. F. White, “Postoperative nausea and vomiting: its etiology, treatment, and prevention,” Anesthesiology, vol. 77, no. 1, pp. 162–184, 1992.
[6]  A. Borgeat and H. R. Stirnemann, “Ondansetron is effective to treat spinal or epidural morphine-induced pruritus,” Anesthesiology, vol. 90, no. 2, pp. 432–436, 1999.
[7]  J. Leeser and H. Lip, “Prevention of postoperative nausea and vomiting using ondansetron, a new, selective, 5-HT3 receptor antagonist,” Anesthesia and Analgesia, vol. 72, no. 6, pp. 751–755, 1991.
[8]  E. Campora, L. Merlini, M. Pace et al., “The incidence of narcotic-induced emesis,” Journal of Pain and Symptom Management, vol. 6, no. 7, pp. 428–430, 1991.
[9]  G. Sussman, J. Shurman, M. R. Creed et al., “Intravenous ondansetron for the control of opioid-induced nausea and vomiting, International S3AA3013 study group,” Clinical Therapeutics, vol. 21, no. 7, pp. 1216–1227, 1999.
[10]  P. I. Williams and M. Smith, “An assessment of prochlorperazine buccal for the prevention of nausea and vomiting during intravenous patient-controlled analgesia with morphine following abdominal hysterectomy,” European Journal of Anaesthesiology, vol. 16, no. 9, pp. 638–645, 1999.
[11]  T. Hirayama, F. Ishii, K. Yago, and H. Ogata, “Evaluation of the effective drugs for the prevention of nausea and vomiting induced by morphine used for postoperative pain: a quantitative systematic review,” Yakugaku Zasshi, vol. 121, no. 2, pp. 179–185, 2001.
[12]  G. W. Rung, L. Claybon, A. Hord et al., “Intravenous ondansetron for postsurgical opioid-induced nausea and vomiting,” Anesthesia and Analgesia, vol. 84, no. 4, pp. 832–838, 1997.
[13]  M. Dresner, S. Dean, A. Lumb, and M. Bellamy, “High-dose ondansetron regimen vs droperidol for morphine patient-controlled analgesia,” British Journal of Anaesthesia, vol. 81, no. 3, pp. 384–386, 1998.
[14]  A. S. Habib and T. J. Gan, “The effectiveness of rescue antiemetics after failure of prophylaxis with ondansetron or droperidol: a preliminary report,” Journal of Clinical Anesthesia, vol. 17, no. 1, pp. 62–65, 2005.
[15]  L. H. J. Eberhart, A. M. Morin, U. Bothner, and M. Georgieff, “Droperidol and 5-HT3-receptor antagonists, alone or in combination, for prophylaxis of postoperative nausea and vomiting: a meta-analysis of randomised controlled trials,” Acta Anaesthesiologica Scandinavica, vol. 44, no. 10, pp. 1252–1257, 2000.
[16]  P. S. Loewen, C. A. Marra, and P. J. Zed, “5-HT3 receptor antagonists vs traditional agents for the prophylaxis of postoperative nausea and vomiting,” Canadian Journal of Anesthesia, vol. 47, no. 10, pp. 1008–1018, 2000.
[17]  E. Figueredo and L. Canosa, “Prophylactic ondansetron for post-operative emesis: meta-analysis of its effectiveness in patients with and without a previous history of motion sickness,” European Journal of Anaesthesiology, vol. 16, no. 8, pp. 556–564, 1999.
[18]  E. Figueredo and L. Canosa, “Prophylactic ondansetron for postoperative emesis. Meta-analysis of its effectiveness in patients with previous history of postoperative nausea and vomiting,” Acta Anaesthesiologica Scandinavica, vol. 43, no. 6, pp. 637–644, 1999.
[19]  C. C. Apfel, K. Korttila, M. Abdalla et al., “A factorial trial of six interventions for the prevention of postoperative nausea and vomiting,” New England Journal of Medicine, vol. 350, no. 24, pp. 2441–2451, 2004.
[20]  W. Y. Chou, L. C. Yang, H. F. Lu et al., “Association of μ-opioid receptor gene polymorphism (A118G) with variations in morphine consumption for analgesia after total knee arthroplasty,” Acta Anaesthesiologica Scandinavica, vol. 50, no. 7, pp. 787–792, 2006.
[21]  R. R. Romberg, E. Olofsen, H. Bijl et al., “Polymorphism of μ-opioid receptor gene (OPRM1:c.118A>G) does not protect against opioid-induced respiratory depression despite reduced analgesic response,” Anesthesiology, vol. 102, no. 3, pp. 522–530, 2005.
[22]  J. L?tsch and G. Geisslinger, “Are μ-opioid receptor polymorphisms important for clinical opioid therapy?” Trends in Molecular Medicine, vol. 11, no. 2, pp. 82–89, 2005.
[23]  A. T. Sia, Y. Lim, E. C. P. Lim et al., “A118G single nucleotide polymorphism of human μ-opioid receptor gene influences pain perception and patient-controlled intravenous morphine consumption after intrathecal morphine for postcesarean analgesia,” Anesthesiology, vol. 109, no. 3, pp. 520–526, 2008.
[24]  C. Bond, K. S. Laforge, M. Tian et al., “Single-nucleotide polymorphism in the human mu opioid receptor gene alters β-endorphin binding and activity: possible implications for opiate addiction,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 16, pp. 9608–9613, 1998.
[25]  W. Y. Chou, C. H. Wang, P. H. Liu, C. C. Liu, C. C. Tseng, and B. Jawan, “Human opioid receptor A118G polymorphism affects intravenous patient-controlled analgesia morphine consumption after total abdominal hysterectomy,” Anesthesiology, vol. 105, no. 2, pp. 334–337, 2006.
[26]  E. C. Tan, E. C. P. Lim, Y. Y. Teo, Y. Lim, H. Y. Law, and A. T. Sia, “Ethnicity and OPRM variant independently predict pain perception and patient-controlled analgesia usage for post-operative pain,” Molecular Pain, vol. 5, article 32, 2009.
[27]  D. Campa, A. Gioia, A. Tomei, P. Poli, and R. Barale, “Association of ABCB1/MDR1 and OPRM1 gene polymorphisms with morphine pain relief,” Clinical Pharmacology and Therapeutics, vol. 83, no. 4, pp. 559–566, 2008.
[28]  L. S. Zun, L. V. A. Downey, W. Gossman, J. Rosenbaum, and G. Sussman, “Gender differences in narcotic-induced emesis in the ED,” American Journal of Emergency Medicine, vol. 20, no. 3, pp. 151–154, 2002.
[29]  E. M. M. Quigley, W. L. Hasler, and H. P. Parkman, “AGA technical review on nausea and vomiting,” Gastroenterology, vol. 120, no. 1, pp. 263–286, 2001.
[30]  S. Z. Zhao, F. Chung, D. B. Hanna, A. L. Raymundo, R. Y. Cheung, and C. Chen, “Dose-response relationship between opioid use and adverse effects after ambulatory surgery,” Journal of Pain and Symptom Management, vol. 28, no. 1, pp. 35–46, 2004.
[31]  M. A. Chaney, “Side effects of intrathecal and epidural opioids,” Canadian Journal of Anaesthesia, vol. 42, no. 10, pp. 891–903, 1995.
[32]  P. R. Bromage, E. M. Camporesi, A. C. Durant, and C. H. Nielsen, “Nonrespiratory side effects of epidural morphine,” Anesthesia and Analgesia, vol. 61, no. 6, pp. 490–495, 1982.
[33]  R. D. Vincent Jr., D. H. Chesnut, W. W. Choi, P. L. G. Ostman, and J. N. Bates, “Does epidural fentanyl decrease the efficacy of epidural morphine after cesarean delivery?” Anesthesia and Analgesia, vol. 74, no. 5, pp. 658–663, 1992.
[34]  K. A. Loper and L. B. Ready, “Epidural morphine after anterior cruciate ligament repair: a comparison with patient-controlled intravenous morphine,” Anesthesia and Analgesia, vol. 68, no. 3, pp. 350–352, 1989.
[35]  R. Weller, M. Rosenblum, P. Conard, et al., “Comparison of epidural and patient-controlled intravenous morphine following joint replacement surgery,” Canadian Journal of Anaesthesia, vol. 38, no. 5, pp. 582–586, 1991.
[36]  S. E. Rapp, L. B. Ready, and B. E. Greer, “Postoperative pain management in gynecologic oncology patients utilizing epidural opiate analgesia and patient-controlled analgesia,” Gynecologic Oncology, vol. 35, no. 3, pp. 341–344, 1989.
[37]  D. M. Harrison, R. Sinatra, L. Morgese, and J. H. Chung, “Epidural narcotic and patient-controlled analgesia for post-cesarean section pain relief,” Anesthesiology, vol. 68, no. 3, pp. 454–457, 1988.
[38]  S. J. Mather and J. M. Peutrell, “Postoperative morphine requirements, nausea and vomiting following anaesthesia for tonsillectomy. Comparison of intravenous morphine and non-opioid analgesic techniques,” Paediatric Anaesthesia, vol. 5, no. 3, pp. 185–188, 1995.
[39]  S. A. Nortcliffe, J. Shah, and D. J. Buggy, “Prevention of postoperative nausea and vomiting after spinal morphine for Caesarean section: comparison of cyclizine, dexamethasone and placebo,” British Journal of Anaesthesia, vol. 90, no. 5, pp. 665–670, 2003.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133